Tim Sullivan

Probabilistic meshless methods for partial differential equations and Bayesian inverse problems

Preprint: Probabilistic meshless methods for PDEs and BIPs

Jon Cockayne, Chris Oates, Mark Girolami and I have just uploaded a preprint of our latest paper, “Probabilistic meshless methods for partial differential equations and Bayesian inverse problems” to the arXiv. This paper forms part of the push for probabilistic numerics in scientific computing.

Abstract. This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse problems while accounting, in a rigorous way, for the impact of the discretisation of the forward problem. In particular, this confers robustness to failure of meshless methods, with statistical inferences driven to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenging setting of inverse problems with a non-linear forward model is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions.

Published on Thursday 26 May 2016 at 09:00 UTC #publication #preprint #prob-num