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Outline of talk

Introduction and motivation.

Brief review of (some) previous studies in the area.

Statement of main result.

Sketch of the proof of the main result.

Directions for future research.
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Introduction

Motivation

Many physical processes exhibit “frictional/stick-slip
behaviour”.

Simple examples:

Ball rolling/person skiing down a slope with some bumps.
Progression of a dislocation line in a crystal.
Evolution of a magnetic domain under an applied field
(Barkhausen effect).
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Image subject to GNU Free Documentation License. Courtesy of Wikimedia Commons.
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Introduction

Motivation

Intuition suggests that stick-slip behaviour arises from
microstructural variations.

Microstructure � macroscopic observables, e.g. yield stresses,
coefficients of friction & c.

These “macro” quantities can be used as parameters in
(relatively) successful models, e.g. rate-independent
differential inclusions.

Exactly how the microstructure determines macroscopic
behaviour is still not generally understood.
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Introduction

Existing approaches

Rate-independent solutions to differential inclusions:

−∇V (Xt) + f(t) ∈ ∂ψ(
Ẋt

)
with ψ convex and homogeneous of degree one.

Over-damped limit (neglect kinetic energy):

Ẋε
t = −∇V ε (t,Xε

t ) .

Is it possible to extract the first model from the second as a
suitable limit as ε ↓ 0?



T.J. Sullivan & F. Theil — Deterministic stick-slip dynamics in a one-dimensional random potential

Introduction

Previous one-dimensional studies

Ẋε
t = −V ′(Xt

) − (εG)′
(
Xε

t

ε

)
+ f(εt).

Abeyaratne-Chu-James (1996), Menon (2002): averaging
methods for periodic perturbations of the potential; not
rate-independent, but can extract a rate-independent corollary
(limit satisfies a deterministic ordinary differential inclusion
determined by bounds on G′).
Grunewald (2005): perturbation is an (integrated)
Ornstein-Uhlenbeck process; Fokker-Planck methods
insufficient to establish stick-slip behaviour in the limit.
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Model

Model in one dimension — random ode

On the real line R, consider

a potential V (x) = κ
2x

2, κ > 0;

a C0 gradient field g := G′ : Ω × R → [γ−, γ+];
(Ω,F ,P) a probability space;
wiggly potential x �→ V (x) + εG

(
ω, x

ε

)
;

a C0 external loading f : [0,+∞) → R;
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Model

Model in one dimension — random ode

On the real line R, consider

a potential V (x) = κ
2x

2, κ > 0;

a C0 gradient field g := G′ : Ω × R → [γ−, γ+];
(Ω,F ,P) a probability space;
wiggly potential x �→ V (x) + εG

(
ω, x

ε

)
;

a C0 external loading f : [0,+∞) → R;

Random gradient flow ode with “landscape parameter” ω ∈ Ω:

Ẋε
t (ω) = −V ′(Xε

t (ω)
) −G′

(
ω,
Xε

t (ω)
ε

)
+ f(εt).

Standard results give existence of solutions for all positive time.
Later results remove any need for uniqueness.
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Model

Model in one dimension — random landscape
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Model

Model in one dimension — random landscape
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Model

Model in one dimension — random landscape
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Model

Model in one dimension — random landscape
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Model

Model in one dimension — limit process

Random ode:

Ẋε
t (ω) = −κXε

t (ω) − g

(
ω,
Xε

t (ω)
ε

)
+ f(εt).

Limiting process as ε ↓ 0:

X0
t := lim

ε↓0
Xε

t/ε.

In principle, this limiting object is a stochastic process
X0 : Ω × [0,+∞) → R dependent on the choice of process g and
the “landscape parameter” ω ∈ Ω, but...
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Results

Main theorem — first draft

Theorem (T.J.S.–F.T. (2006))

Let g : Ω×R → [γ−, γ+] be a doubly-reflected Wiener process and
let f ∈ C0([0,+∞); R). Then, for P-a.a. ω ∈ Ω, X0(ω) satisfies
the deterministic ordinary differential inclusion

− V ′(X0
t

)
+ f(t) ∈ ∂ψγ

(
Ẋ0

t

)
, (ODI)

where the dissipation ψγ : R → [0,+∞) is given by

ψγ(ẋ) :=

{
γ−ẋ; ẋ ≤ 0;
γ+ẋ; ẋ ≥ 0.

Note that (ODI) is deterministic and has a unique deterministic
solution, which can be easily visualised by the “drainpipe rule”.
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Results

“Drainpipe rule” for solutions of (ODI)

1 2 3 4 5 6

-2

-1

1

t

X0
t , f(t), Aγ(f(t))

A typical deterministic, rate-independent P-a.s. limit X0, shown in
blue. Loading f(t) = sin t+ cos 2t shown in red; “sticky attractor”
Aγ(f(t)) shown in green.
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Results

Hysteresis loops
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Hysteresis loops for the deterministic, rate-independent P-a.s. limit
X0, shown in blue. Again, f(t) = sin t+ cos 2t.
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Results

Sticky attractor for X0 dynamics

1 2 3 4 5 6

-2

-1

1

The sticky attractor Aγ : R → 2R:

Aγ(F ) :=
[
F − γ+

κ
,
F − γ−

κ

]
.

Attractor in the sense that all trajectories lie in Aγ(f(t)) for
all t > 0, regardless of initial condition.

Sticky in the sense that if a trajectory can remain stationary
and stay inside Aγ(f(t)), it will.
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Outline of proof

Strategy of proof of main theorem

Identify the fixed-point set for the dynamics at scale ε > 0,
some fixed landscape given by ω ∈ Ω, constant loading
f(t) ≡ 0.
Take a suitable limit of these sets as ε ↓ 0, P-almost surely
losing ω-dependence along the way.

No loading � constant loading � variable loading.

Show that the limit “tube” t �→ Aγ(f(t)) has the desired
properties (sticky attractor) for the process X0.
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Outline of proof

Limits of sets

Definition (Kuratowski (1966))

Let (M, d) be a metric space. Define the Kuratowski limit inferior
of a family of subsets {Aε ⊆ M}ε>0 to be

Liε↓0Aε :=

{
x ∈ M

∣∣∣∣∣lim sup
ε↓0

dH(x,Aε) = 0

}
,

where dH(x,Aε) := infy∈Aε d(x, y) is the usual Hausdorff
semi-distance.

(The Kuratowski notions of limit superior (Ls) and limit (Lim) are
not required in this analysis.)
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Outline of proof

Key lemma

Ẋε
t (ω) = −κXε

t (ω) − g

(
ω,
Xε

t (ω)
ε

)
+ f(εt).

Lemma

Let g : Ω×R → [γ−, γ+] be a doubly-reflected Wiener process and
let

Ag(ω)
ε (0) :=

{
x ∈ R

∣∣∣−κx− g
(
ω,
x

ε

)
= 0

}
,

the fixed-point set for the dynamics in the landscape
V (·) + εG(ω, ·/ε) at scale ε > 0 with no loading. Then

Liε↓0Ag(ω)
ε (0) = Aγ(0) ≡

[−γ+

κ
,
−γ−
κ

]
for P-a.a. ω ∈ Ω.

“The attractors for ε > 0 fill up the correct interval as ε ↓ 0.”
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Outline of proof

Sketch proof of key lemma

Idea: intermediate value theorem + scaling.
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Outline of proof

Sketch proof of key lemma

Idea: intermediate value theorem + scaling.

Define “first return separations” Dn(ω) from γ+ to γ− and
back to γ+.

Require (in both directions): sample-continuity of g,
Dn < +∞ P-a.s.,

∑
nDn = +∞ P-a.s. and

Dn∑n−1
i=0 Di

−−−→
n→∞ 0 P-a.s. (�)
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Outline of proof

Sketch proof of key lemma

Idea: intermediate value theorem + scaling.

Define “first return separations” Dn(ω) from γ+ to γ− and
back to γ+.

Require (in both directions): sample-continuity of g,
Dn < +∞ P-a.s.,

∑
nDn = +∞ P-a.s. and

Dn∑n−1
i=0 Di

−−−→
n→∞ 0 P-a.s. (�)

For g : Ω × R → [γ−, γ+] a doubly-reflected Wiener process,
all the conditions (�) are met (g sample-continuous with Dn

iid, E[Dn] = 4|γ+ − γ−|2, Var[Dn] = 32|γ+ − γ−|4).
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Outline of proof

Sketch proof of key lemma

Clearly, many more processes satisfy (�), but a
doubly-reflected Wiener process is a good prototype.

In fact, something better is true: the conditions (�) are
necessary and sufficient to conclude that

Liε↓0Ag(ω)
ε (0) =

[−γ+

κ
,
−γ−
κ

]
P-a.s.

Argue from contradiction.
If any one of the conditions (�) fails then there is a collection
of “bad” landscapes of positive probability for which

Liε↓0A
g(ω)
ε (0) is not what we want.
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Outline of proof

Further lemmata

Lemma (Stickiness locally in time)

Let 0 ≤ t0 < t1 <∞ and let I denote any interval from t0 to t1
with either end open or closed. P-a.s., if f |I is bounded, and

X0
t0 ∈ Aγ(f(t)) for all t ∈ I,

then X0
t = X0

t0 for all t ∈ I.

Lemma (Right limit property)

Let t0 ≥ 0 be such that f(t0+) exists. Then

X0
t0+ = X0

t0 � Aγ(f(t0+)) P-a.s.,

where y �A denotes the closest point of the interval Ā to y.
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Conclusions and further work

Main theorem revisited

Theorem (T.J.S.–F.T. (2006-07))

Let f ∈ C0([0,+∞); R) and let g : Ω × R → [γ−, γ+] be any
stochastic process. Then g satisfies (�) if, and only if, X0

P-a.s.
satisfies the deterministic ordinary differential inclusion

−V ′(X0
t

)
+ f(t) ∈ ∂ψγ

(
Ẋ0

t

)
, (ODI)

where the dissipation ψγ : R → [0,+∞) is given by

ψγ(ẋ) :=

{
γ−ẋ; ẋ ≤ 0;
γ+ẋ; ẋ ≥ 0.
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Conclusions and further work

Some conclusions

If one subscribes to the idea that rate-independent evolutions
like (ODI) should arise as small-scale limits of deterministic
evolutions in wiggly energies, our theorem shows that the
precise choice of wiggle is not so important.

“Homogenization without periodicity of the fast (microscale)
process.”
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Conclusions and further work

Further work

Extension to more general spatial noise processes g?

Extension to R
d, d ≥ 1? To infinite-dimensional spaces like

W k,p(D; R)?

Ẋt = −∇V (
Xt

) −∇G
(
ω,
Xt

ε

)
+ f(εt).

Include the effects of a heat bath via a stochastic differential?

Ẋε
t (ω1, ω2) = −∇V (

Xε
t

) −∇G
(
ω1,

Xε
t

ε

)
+ σ(ε)Ẇt(ω2).

Which “wins” as ε ↓ 0? The diffusive or the stick-slip
dynamics?


