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Brownian motion

J. Ingenhousz 1785, R. Brown 1827: “large” particles
suspended in water move “randomly” because they are
bombarded by randomly moving water molecules.

T.N. Thiele 1880: initial analysis of these random motions.

L. Bachelier 1900: stochastic analysis of the stock and option
markets.

A. Einstein 1905, M. Smoluchowski 1906: these Brownian
paths are random continuous paths with stationary,
independent, normally distributed increments.



◦•◦◦◦

Introduction
◦◦◦

Lebesgue measure
◦◦◦◦◦◦◦◦◦◦◦

Gaussian measures
◦◦

Stochastic integration I
◦◦◦

Brownian motion
◦◦◦◦

Stochastic integration II

T. Lucretius Carus, c. 60bc, De Rerum Natura

“Observe what happens when sunbeams are admitted into a
building and shed light on its shadowy places. You will see a
multitude of tiny particles mingling in a multitude of ways. . . their
dancing is an actual indication of underlying movements of matter
that are hidden from our sight. . . It originates with the atoms
which move of themselves. Then those small compound bodies
that are least removed from the impetus of the atoms are set in
motion by the impact of their invisible blows and in turn cannon
against slightly larger bodies. So the movement mounts up from
the atoms and gradually emerges to the level of our senses, so that
those bodies are in motion that we see in sunbeams, moved by
blows that remain invisible.”
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Questions

How to choose a continuous path in R
n “at random”?

How to do measure/probability theory on infinite-dimensional
spaces?

How to calculate integrals (expectations) like

E[f ] =

∫

C0([0,T ];Rn)
f(x) dx? (A. Einstein, N. Wiener. . . )

E[f ] =

∫

universes
f(u) du? (R. Feynman, S. Hawking. . . )

How to make sense of a differential equation like

dX(t)

dt
= b(t,X(t)) + “noise”?
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Definition

A measure space is a triple (X ,F , µ) where

X is a set;

F is a σ-algebra: a family of subsets of X , containing X , and
closed under countable unions, intersections, set
differences. . . ;

µ : F → [0,+∞] is a measure, satisfying

µ(∅) = 0 and µ

(

⊎

k∈N

Ak

)

=
∑

k∈N

µ(Ak).

If µ(X ) = 1, then µ is called a probabilty measure and
(X ,F , µ) a probability space.
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Definition

Consider a Hausdorff topological space X and a Borel measure
µ : B(X ) → [0,+∞]

µ is strictly positive if every open set U has µ(U) > 0.

µ is locally finite if every point x ∈ X has a (open)
neighbourhood Nx with µ(Nx) < +∞.

µ is invariant under T : X → X if T∗µ = µ, i.e.

for all Borel B ⊆ X , µ
(

T−1(B)
)

= µ(B).

µ is quasi-invariant under T : X → X if T∗µ ≈ µ, i.e.

for Borel B ⊆ X , µ
(

T−1(B)
)

= 0 ⇐⇒ µ(B) = 0.
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Definition

Lebesgue measure on R
n is the “completion” or “extension” of the

usual notion of n-dimensional volume for rectangular boxes in R
n

to B(Rn).

Theorem (The wonders of Lebesgue measure)

Lebesgue measure on R
n is locally finite, strictly positive, and

invariant under all translations. Moreover, up to multiplication by
a positive constant, it is the only Borel measure with these
properties.
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A näıve attempt to construct a “Lebesgue measure” on

C0 :=
{

x : [0, T ] → R
n
∣

∣x continuous, x(0) = 0
}

might go something like this...

I wish to integrate f : C0 → R “with respect to x ∈ C0”.

I pick a partition Π = {0 = t0 < t1 < . . . < tk = T} of [0, T ],
let x̄Π be a “piecewise constant version of x”, and calculate

∫

Rn

· · ·
∫

Rn

f(x̄Π) dx(t0)dx(t1) . . . dx(tk)

Now take the limit as k → ∞ and the mesh of the partition Π
tends to zero.

∫

C0

f(x)Dx :=
(!!!)

lim
mesh(Π)→0

∫

Rn

· · ·
∫

Rn

f(x̄Π) dx(t0)dx(t1) . . . dx(tk).

This is known as a path integral.
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Theorem (Bad news for physicists!)

Let X be an infinite-dimensional, separable Hilbert (or even just
Banach) space. Then the only locally finite and
translation-invariant Borel measure on X is the trivial (zero)
measure.
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Theorem (Bad news for physicists!)

Let X be an infinite-dimensional, separable Hilbert (or even just
Banach) space. Then the only locally finite and
translation-invariant Borel measure on X is the trivial (zero)
measure.

Proof.

Suppose Br(0) has finite measure. Then there exists a countably
infinite family {Br/4(xi)}i∈N, all contained in Br(0), all having the
same measure. For their union to have finite measure, they must
each have measure zero. Since X is separable, it can be covered by
a countable family {Br/4(yi)}i∈N, and so has measure zero!
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Theorem (Bad news for physicists!)

Let X be an infinite-dimensional, separable Hilbert (or even just
Banach) space. Then the only locally finite and
translation-invariant Borel measure on X is the trivial (zero)
measure.

Proof.

Suppose Br(0) has finite measure. Then there exists a countably
infinite family {Br/4(xi)}i∈N, all contained in Br(0), all having the
same measure. For their union to have finite measure, they must
each have measure zero. Since X is separable, it can be covered by
a countable family {Br/4(yi)}i∈N, and so has measure zero!

The moral of the tale is that infinite-dimensional spaces are big
and weird. Life is no better in non-separable spaces: µ might not
turn out to be trivial, but won’t be strictly positive.
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Definition

Gaussian measure on R with mean m ∈ R and variance σ2 > 0 is
the Borel measure γ defined by

γ(A) :=
1

σ
√

2π

∫

A
exp

(

−|x − m|2
2σ2

)

dx.



◦◦◦◦◦

Introduction
◦◦◦

Lebesgue measure
•◦◦◦◦◦◦◦◦◦◦

Gaussian measures
◦◦

Stochastic integration I
◦◦◦

Brownian motion
◦◦◦◦

Stochastic integration II

Definition

Gaussian measure on R with mean m ∈ R and variance σ2 > 0 is
the Borel measure γ defined by

γ(A) :=
1

σ
√

2π

∫

A
exp

(

−|x − m|2
2σ2

)

dx.

Definition

Gaussian measure on R
n with mean m ∈ R

n and covariance matrix
C ∈ R

n×n is the Borel measure γ defined by

γ(A) :=
1

√

(2π)n detC

∫

A
exp

(

−(x − m) · C−1(x − m)

2

)

dx.
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It’s easy to check that Gaussian measures on R
n always have

Gaussian push-forward on R via any linear map R
n → R, so we

make an extended definition for more general spaces:

Definition

A Borel measure µ on a (Banach) space X is called a Gaussian
measure if, for every ℓ ∈ X ∗, the push-forward measure ℓ∗µ on R

is a Gaussian measure, i.e. normal distribution with some finite
mean and variance.
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It’s easy to check that Gaussian measures on R
n always have

Gaussian push-forward on R via any linear map R
n → R, so we

make an extended definition for more general spaces:

Definition

A Borel measure µ on a (Banach) space X is called a Gaussian
measure if, for every ℓ ∈ X ∗, the push-forward measure ℓ∗µ on R

is a Gaussian measure, i.e. normal distribution with some finite
mean and variance.

It’s equivalent to require that T∗µ be a finite-dimensional
Gaussian measure for every continuous linear map
T : X → R

n.

It’s also convenient to allow Dirac masses as “degenerate”
Gaussian measures (with zero variance).
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Definition

The mean of a (Gaussian) measure µ on X is the element m ∈ X
such that, for every ℓ ∈ X ∗,

∫

X

ℓ(x − m) dµ(x) = 0,

or, if one is comfortable with vector-valued integrals,

m =

∫

X

xdµ(x).
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Definition

The covariance operator of µ is a bilinear operator

Cµ : X ∗ ×X ∗ → R,

Cµ(k, ℓ) :=

∫

X

k(x − m)ℓ(x − m) dµ(x).

By fixing one argument in X ∗, can also view Cµ as an
operator

Cµ : X ∗ → X ∗∗(∼= X if X is reflexive).

Using Riesz’s representation theorem that every Hilbert space
H is isomorphic to its dual H∗, can view Cµ for µ on a
Hilbert space H as an operator

Cµ : H → H.
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Theorem (Fernique)

Let µ be a (mean-zero) Gaussian measure on a separable Banach
space X . Then µ has exponentially small tails: there exists a
constant α > 0 such that

∫

X

exp
(

α‖x‖2
)

dµ(x) < +∞.

Hence, µ has finite mean, variance. . . finite moments of all orders,
and all continuous linear functionals ℓ ∈ X ∗ are integrable.

Corollary (Continuity of the covariance operator)

The covariance operator Cµ is a continuous linear operator,
i.e. there exists ‖Cµ‖op < +∞ such that

|Cµ(k, ℓ)| ≤ ‖Cµ‖op‖k‖X ∗‖ℓ‖X ∗ for all k, ℓ ∈ X ∗.
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Definition

A bounded linear operator K : H → H is of trace class if for some
(and hence all) orthonormal bases {ek}k of H,

∑

k

〈(K∗K)1/2ek, ek〉H < ∞.

In this case, the trace tr K :=
∑

k〈Kek, ek〉H is absolutely
convergent and is independent of the choice of the orthonormal
basis.
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Definition

A bounded linear operator K : H → H is of trace class if for some
(and hence all) orthonormal bases {ek}k of H,

∑

k

〈(K∗K)1/2ek, ek〉H < ∞.

In this case, the trace tr K :=
∑

k〈Kek, ek〉H is absolutely
convergent and is independent of the choice of the orthonormal
basis.

Theorem (Classification of covariance operators)

Consider a separable Hilbert space H and a Gaussian measure µ on
H. Then Cµ : H → H is trace class.
Conversely, if K : H → H is positive semi-definite, symmetric, and
of trace class, then K = Cµ for some Gaussian measure µ on H.
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Definition

Two measures µ, ν on X are mutually singular if X = A ⊎ B with
µ(A) = ν(B) = 0

Example

Two Dirac measures (point masses) on distinct points are
mutually singular.

Any Dirac measure and Lebesgue measure on R are mutually
singular.

Theorem

Let µ, ν be two Gaussian measures on an infinite-dimensional
Banach space X . Then µ and ν are either equivalent or they are
mutually singular.
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Definition

The Cameron–Martin space for a Gaussian measure µ on a Banach
space X is a Hilbert space H continuously embedded in X and
defined equivalently by

H is the completion of

{

h ∈ X
∣

∣for some h′ ∈ H∗, Cµ(h′,−) = 〈−, h〉 ∈ H∗∗ ∼= H
}

with respect to 〈h, k〉H := Cµ(h′, k′)

H is the intersection of all µ-measure-1 subspaces of X ;

H is the set of all directions v ∈ X so that µ and T v
∗ µ are

equivalent.

Warning! If dimH = +∞, then H has µ-measure equal to zero!
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Theorem

Consider standard Gaussian measure γ on R
n (mean zero,

covariance = identity matrix), and let T v denote translation by
v ∈ R

n. Then T v
∗ γ is equivalent to γ with density

dT v
∗ γ

dγ
(x) = exp

(

v · x − 1

2
|v|2
)

i.e., for all f ∈ L1(Rn, γ; R),

∫

Rn

f(x) dT v
∗ γ(x) =

∫

Rn

f(x) exp

(

v · x − 1

2
|v|2
)

dγ(x)
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Theorem (Cameron–Martin)

For any Gaussian measure µ on a Banach space X , and any
v ∈ H ⊆ X , T v

∗ µ is equivalent to µ with density

dT v
∗ µ

dµ
(x) = exp

(

〈v, x〉∼ − 1

2
‖v‖2

H

)

i.e., for all f ∈ L1(X , µ; R),

∫

X

f(x) dT v
∗ µ(x) =

∫

X

f(x) exp

(

〈v, x〉∼ − 1

2
‖v‖2

H

)

dµ(x).

〈v, x〉∼ is, in some sense, an extension of the inner product
〈·, ·〉 : H×H → R to something H×X → R. It’s called the
Paley–Wiener integral and is our first example of a stochastic
integral.
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Corollary (Integration by parts)

Suppose f : X → R has Fréchet derivative Df : X → X ∗. Then
integrating the Cameron–Martin formula gives

∫

X

f(x+ti(h)) dµ(x) =

∫

X

f(x) exp

(

t〈h, x〉∼ − 1

2
t2‖h‖2

H

)

dµ(x)

for any t ∈ R. Formally differentiating with respect to t and
evaluating at t = 0 gives the integration by parts formula

∫

X

Df(x)(i(h)) dµ(x) =

∫

X

f(x)〈h, x〉∼ dµ(x).

Formulae like this give rise to the motto that “stochastic integrals
are like infinite-dimensional divergence operators.”
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Our first kind of stochastic integral, the Paley–Wiener integral,
comes right out of the abstract formulation.
Recall that the Cameron–Martin space is a Hilbert space H sitting
inside X ; the inclusion i : H →֒ X is continuous, linear and
injective; for simplicity, assume that i(H) is dense in X .
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Our first kind of stochastic integral, the Paley–Wiener integral,
comes right out of the abstract formulation.
Recall that the Cameron–Martin space is a Hilbert space H sitting
inside X ; the inclusion i : H →֒ X is continuous, linear and
injective; for simplicity, assume that i(H) is dense in X .

Lemma

Given that i : H →֒ X is continuous, linear and injective with dense
range, so is the adjoint j := i∗ : X ∗ → H∗ ∼= H, where

i∗(ℓ)(h) = ℓ(i(h)) for all ℓ ∈ X ∗, h ∈ H.
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(All arrows are continuous linear maps.)

H � � i (inj.)
// X

j(X ∗)
_�

dense inclusion

��

I

((R

R

R

R

R

R

R

R

R

R

R

R

R

R

X ∗? _
j:=i∗ (inj.)

oo

π : ℓ 7→[ℓ]
��

H
Ī

//_______ L2(X , µ; R)

Lemma

For all f ∈ X ∗, ‖j(ℓ)‖H = ‖ℓ‖L2(X ,µ;R).

The extended map Ī : H → L2(X , µ; R) is the Paley–Wiener
integral; I(h)(x) is what was called 〈h, x〉∼ in statement of the
Cameron–Martin theorem.
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Definition

The classical Wiener space is the above set-up with

X := C0, continuous paths in R
n starting at 0, with

‖x‖X := ‖x‖∞ = sup
t∈[0,T ]

|x(t)|;

H := L
2,1
0 , paths in R

n starting at 0 with time derivative in
L2, with

〈h, k〉H :=

∫ T

0
ḣ(t) · k̇(t) dt;

and the measure is the “standard” Gaussian measure on C0

— “standard” in the sense that on n-dimensional subspaces of
H, it’s standard n-dimensional Gaussian measure. We call it
Wiener measure, W.
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This gives us a probability space (Ω,F , P) = (C0,B(C0), W).

The Paley–Wiener integral becomes

〈h, x〉∼ =

∫ T

0
ḣ(t) · dx(t) =

∫ T

0
ḣ(t) · ẋ(t) dt,

but it makes sense even if x is just continuous!



◦◦◦◦◦

Introduction
◦◦◦

Lebesgue measure
◦◦◦◦◦◦◦◦◦◦◦

Gaussian measures
◦◦

Stochastic integration I
◦•◦

Brownian motion
◦◦◦◦

Stochastic integration II

This gives us a probability space (Ω,F , P) = (C0,B(C0), W).

The Paley–Wiener integral becomes

〈h, x〉∼ =

∫ T

0
ḣ(t) · dx(t) =

∫ T

0
ḣ(t) · ẋ(t) dt,

but it makes sense even if x is just continuous!

We can consider random variables X : Ω → R, Rn,Y . . .

An obvious one to consider is the identity map, known in this
case as the canonical process, standard Wiener process or
standard Brownian motion

W : Ω → C0

ω 7→ ω.

What are the properties of this path-valued random variable?
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Theorem

The standard Wiener process W satisfies

W (0) = 0;

W-almost surely, t 7→ W (t) is continuous;

W-almost surely, t 7→ W (t) is nowhere differentiable;

for 0 ≤ s < t ≤ T , given W (s), the increments are normally
distributed:

W (t) − W (s) ∼ N (0, t − s);

for 0 ≤ s < t ≤ u < v ≤ T , the increments W (v) − W (u)
and W (t) − W (s) are independent.

...which is exactly what Einstein, Wiener et al. wanted!
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Consider the Riemann–Stieltjes integral of f : [0, T ] → R with
respect to g : [0, T ] → R of class C1 (or actually of bounded
variation):

∫ T

0
f(t) dg(t) =

∫ T

0
f(t)ġ(t) dt

= lim
mesh(Π)→0

k
∑

i=1

f(ti)
(

g(ti+1) − g(ti)
)

where the limit is taken as the mesh of the partition
Π = {0 = t0 < t1 < . . . < tk = T} tends to 0.

What would this integral be if g were merely continuous?

This question doesn’t really make sense for any particular
continuous g, but can be answered in a probabilistic way using
standard Gaussian Wiener measure W on C0.
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Standard Wiener probability space (Ω = C0,B(C0), W).

Standard Wiener process/Brownian motion W = id: Ω → C0.

Another path-valued random variable (stochastic process)
X : Ω → C0([0, T ]; Rn).

A “decent” function f : [0, T ] × R
n → R.

The Itō integral

∫ T

0
f(t,X(t)) dW (t) : Ω → R

is also a random variable . . .

defined by taking the Riemann–Stieltjes integral

∫ T

0
f(t,X(t)) dW (t) = lim

mesh(Π)→0

k
∑

i=1

f(ti,X(ti))
(

W (ti+1)−W (ti)
)

but with two important caveats.
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∫ T

0
f(t,X(t)) dW (t) = lim

mesh(Π)→0

k
∑

i=1

f(ti,X(ti))
(

W (ti+1)−W (ti)
)

This limit cannot be taken “pointwise” in Ω; it has to be
taken as a limit in L2(Ω, W; R). In particular, it is only
determined up to sets of measure zero.
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∫ T

0
f(t,X(t)) dW (t) = lim

mesh(Π)→0

k
∑

i=1

f(ti,X(ti))
(

W (ti+1)−W (ti)
)

This limit cannot be taken “pointwise” in Ω; it has to be
taken as a limit in L2(Ω, W; R). In particular, it is only
determined up to sets of measure zero.

If you replace f(ti,X(ti)), i.e. evaluation at the left of each
subinterval, with

f

(

ti + ti+1

2
,X

(

ti + ti+1

2

))

,

i.e. evaluation at the mid-point of each subinterval, you get a
different limit! This is the Stratonovich integral, often denoted

∫ T

0
f(t,X(t)) ◦ dW (t).
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This allows us to write down stochastic differential equations,
i.e. “differential equations with randomness” in a rigorous way as
stochastic integral equations. For example, the Itō sde

dX(t)

dt
= b(t,X(t)) + σ(t,X(t))

dW (t)

dt

(!!!)
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Stochastic integration II

This allows us to write down stochastic differential equations,
i.e. “differential equations with randomness” in a rigorous way as
stochastic integral equations. For example, the Itō sde

dX(t)

dt
= b(t,X(t)) + σ(t,X(t))

dW (t)

dt

(!!!)

means

X(t) = X(0) +

∫ t

0
b(s,X(s)) ds +

∫ t

0
σ(s,X(s)) dW (s).

Happily, the same “Lipschitz coefficients =⇒ existence and
uniqueness of solutions” arguments apply. We can also study the
push-forward measure X∗W on C0([0, T ]; Rn); in nice cases
(Girsanov), it’s a new Gaussian measure. One could also ask about
the smoothness properties of the distribution of X(t) — this leads
to Malliavin calculus.
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