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Introduction Heuristics & Examples

A Toy Model for Rate-Independence and Plasticity

Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle θ to the horizontal. For small θ, the block
sticks; for large θ, it slips.
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A Toy Model for Rate-Independence and Plasticity

Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle θ to the horizontal. For small θ, the block
sticks; for large θ, it slips.

From the macroscopic viewpoint, this is due to friction.

From the microscopic viewpoint, this is due to microstructural
variation; there are lots of local energy minima in which the evolution
can get stuck.

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 3 / 24



Introduction Heuristics & Examples

A Toy Model for Rate-Independence and Plasticity

Consider a block, thought of as a point mass, sliding down a rough
plane inclined at angle θ to the horizontal. For small θ, the block
sticks; for large θ, it slips.

From the macroscopic viewpoint, this is due to friction.

From the microscopic viewpoint, this is due to microstructural
variation; there are lots of local energy minima in which the evolution
can get stuck.

We “ought” to be able to mathematically derive the macroscopic
friction coefficient from the statistical properties of the
microstructure.

Moral/General Theme

Microstructural variations in the energy landscape “average out” to give a
qualitative change in the dissipation potential.
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Introduction Heuristics & Examples

Barkhausen Effect

A less toy-like example with many of the same features is the Barkhausen
effect, which describes the rate independent evolution of a magnetic wall
in a ferromagnetic material sample under a varying applied field:

Figure: Magnetization (J) or flux density (B) as a function of applied magnetic
field intesity (H). The inset shows Barkhausen jumps.
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Introduction Gradient Descents

Gradient Descents — The Basics

Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z : [0, T ] → Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Ω; R3), . . . ).
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Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z : [0, T ] → Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Ω; R3), . . . ).

The evolution of z is determined by an initial condition, an energetic
potential E : [0, T ] ×Z → R ∪ {+∞} and a dissipation potential
Ψ: Z → [0,+∞].
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Introduction Gradient Descents

Gradient Descents — The Basics

Many models for plastic evolutions are phrased in terms of a
quantity/field of interest, z : [0, T ] → Z, Z being some (suitably nice)
linear space (e.g. Hilbert, Banach, BV(Ω; R3), . . . ).

The evolution of z is determined by an initial condition, an energetic
potential E : [0, T ] ×Z → R ∪ {+∞} and a dissipation potential
Ψ: Z → [0,+∞].

Example

In Z = R
n with dissipation Ψ = 1

2 | · |
2, we have the classical gradient

descent
ż(t) = −∇E(t, z(t)).

Along a trajectory, the energy satisfies the energy balance

d

dt
E(t, z(t)) = −|ż(t)|2 + (∂tE)(t, z(t)).
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Introduction Gradient Descents

Gradient Descents — Energetic Solutions

Definitions

z : [0, T ] → Z is said to be an energetic solution of the gradient descent
problem in E and Ψ if z is absolutely continuous, satisfies the prescribed
intitial condition, and, a.e. in [0, T ], the energy balance

d

dt
E(t, z(t)) = −

(

Ψ(ż(t)) + Ψ⋆(DE(t, z(t)))
)

+ (∂tE)(t, z(t)),

where Ψ⋆ : Z⋆ → R ∪ {+∞} is the convex conjugate of Ψ:

Ψ⋆(ℓ) := sup{〈ℓ, x〉 − Ψ(x) | x ∈ Z}.

Much of this carries over to state spaces with no linear structure: see
Ambrosio, Gigli & Savaré (2008), Gradient Flows in Metric Spaces and in
the Space of Probability Measures.
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Introduction Gradient Descents

Gradient Descents — Energy Inequality

Often we work with the integrated form of the energy balance
equation instead: for every [a, b] ⊆ [0, T ],

0 = E(b, z(b)) − E(a, z(a))

+

∫ b

a

(

Ψ(ż(t)) + Ψ⋆(DE(t, z(t))) − (∂tE)(t, z(t))
)

dt.
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Gradient Descents — Energy Inequality

Often we work with the integrated form of the energy balance
equation instead: for every [a, b] ⊆ [0, T ],

0 = E(b, z(b)) − E(a, z(a))

+

∫ b

a

(

Ψ(ż(t)) + Ψ⋆(DE(t, z(t))) − (∂tE)(t, z(t))
)

dt.

In this equality, ≤ always holds, so it is enough to check whether or
not the following energy inequality holds: for every [a, b] ⊆ [0, T ],

0 ≥ E(b, z(b)) − E(a, z(a))

+

∫ b

a

(

Ψ(ż(t)) + Ψ⋆(DE(t, z(t))) − (∂tE)(t, z(t))
)

dt.
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Introduction Rate-Independent Processes

Rate Independent Processes

A rate-independent evolution is one “with no time-scale of its own”,
one for which time-reparametrized solutions are solutions to the
time-reparametrized problem. In terms of the above set-up, this
corresponds to Ψ being homogeneous of degree one.
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Introduction Rate-Independent Processes

Rate Independent Processes

A rate-independent evolution is one “with no time-scale of its own”,
one for which time-reparametrized solutions are solutions to the
time-reparametrized problem. In terms of the above set-up, this
corresponds to Ψ being homogeneous of degree one.

In this case, Ψ⋆ only takes the values 0 and +∞ and we can re-write
the definition of an energetic solution in terms of an energy constraint
and a stability constraint:

0 ≥ E(b, z(b)) − E(a, z(a)) +

∫ b

a

(Ψ(ż(t)) − (∂tE)(t, z(t))) dt.

−DE(t, z(t)) ∈ E := {ℓ ∈ Z⋆ | Ψ⋆(ℓ) = 0}.

We call E the elastic region and call S(t) := {x | −DE(t, x) ∈ E }
the (locally) stable region at time t.
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Introduction Rate-Independent Processes

Rate Independent Processes
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Figure: In blue, a typical rate-independent evolution in one dimension. The
frontier of the stable region is shown in green.
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Convergence Theorems

What We Seek

We seek theorems of the following type:

Theorem (“Proto-theorem”)

If Eε is a suitable random (spatial) perturbation of E, then there exists a
1-homogeneous dissipation potential Ψ such that if zε solves the wiggly
classical gradient descent

żε(t) = −
1

ε
∇Eε(t, zε(t)),

and z solves the rate-independent problem in E and Ψ,

∂Ψ(ż(t)) ∋ −DE(t, z(t)),

then zε → z in some sense as ε → 0.

We expect Ψ to depend on the structure of the perturbation Eε − E.
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Convergence Theorems Previous Results

Previous Results

Abeyaratne–Chu–James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

zε → z uniformly on [0, T ] and żε
∗
−⇀ ż in L∞([0, T ]; R).
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Abeyaratne–Chu–James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

zε → z uniformly on [0, T ] and żε
∗
−⇀ ż in L∞([0, T ]; R).

Menon 2002: in n = 2, periodic perturbations, same result as in
n = 1 but with caveats — horrible grid effects and resonance zones.
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Convergence Theorems Previous Results

Previous Results

Abeyaratne–Chu–James 1996: in n = 1 with periodic perturbations,
up to a subsequence,

zε → z uniformly on [0, T ] and żε
∗
−⇀ ż in L∞([0, T ]; R).

Menon 2002: in n = 2, periodic perturbations, same result as in
n = 1 but with caveats — horrible grid effects and resonance zones.

Periodicity is a rather unnatural assumption to have to make and — as
Menon’s results show — it even introduces some undesirable features.
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Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Set-Up

Consider the moving uniformly convex energy

E(t, x) := V (x) − ℓ(t)x,

where V ∈ C3(R; R) is uniformly convex and ℓ : [0, T ] → R
∗ is

uniformly Lipschitz.
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1-Dimensional Set-Up

Consider the moving uniformly convex energy

E(t, x) := V (x) − ℓ(t)x,

where V ∈ C3(R; R) is uniformly convex and ℓ : [0, T ] → R
∗ is

uniformly Lipschitz.

The perturbed energy will be

Eε(t, x) := E(t, x) + εG(x/ε),

where
g := −G′ : Ω × R → [−σ,+σ]

is P-almost surely defined, continuous and surjective.
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Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Set-Up

Consider the moving uniformly convex energy

E(t, x) := V (x) − ℓ(t)x,

where V ∈ C3(R; R) is uniformly convex and ℓ : [0, T ] → R
∗ is

uniformly Lipschitz.

The perturbed energy will be

Eε(t, x) := E(t, x) + εG(x/ε),

where
g := −G′ : Ω × R → [−σ,+σ]

is P-almost surely defined, continuous and surjective.

We will show that if G is “wiggly enough”, then the wiggles “average
out” as ε → 0 to give the 1-homogeneous dissipation potential
Ψ := σ| · |.
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Convergence Theorems 1-Dimensional Convergence Theorem

How Wiggly is “Wiggly Enough”?

Definition

Fix σ > 0. For a continuous, surjective function g : R → [−σ,+σ], define
D+

0 ≥ 0 to be the least x > 0 such that g(x) = −σ; inductively define
D+

n+1 to be the least positive number such that g takes both values −σ
and +σ in the interval

(

n
∑

i=0

D+
i ,

n+1
∑

i=0

D+
i

]

;

and define D−
n ≤ 0 similarly. Then g is said to have property (z) if

D±
n exists and is finite for all n;

∑∞
n=0 D±

n = ±∞;

limn→∞

(

D±
n+1/

∑n
i=0 D±

i

)

= 0.
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Convergence Theorems 1-Dimensional Convergence Theorem

1-Dimensional Convergence Theorem

Theorem (S. & T. 2007)

Let E, Eε, Ψ be as above, and

żε(t) = −
1

ε
E′

ε(t, zε(t)),

Ψ(ż(t)) ∋ −E′(t, z(t)).

Then zε → z in probability (and hence in distribution) in C0([0, T ]; R) as
ε → 0 if, and only if, g has property (z). That is, for any δ > 0,

P

[

sup
0≤t≤T

|zε(t) − z(t)| ≥ δ

]

→ 0 as ε → 0.

Hence, up to subsequences, zε → z uniformly on [0, T ], P-almost surely.
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Set-Up

For simplicity, we consider a moving quadratic energy
E(t, x) := 1

2x · Ax − ℓ(t) · x, A ∈ R
n×n postive definite, ℓ Lipschitz.
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Set-Up

For simplicity, we consider a moving quadratic energy
E(t, x) := 1

2x · Ax − ℓ(t) · x, A ∈ R
n×n postive definite, ℓ Lipschitz.

We randomly “dent” E by adding to it the dent function

D(x; y, ε) :=
σ

2

(

∣

∣

∣

∣

x − y

ε

∣

∣

∣

∣

2

− 1

)

−

for y ∈ the points of a dilute Poisson point process O of intensity
ε−p; for technical reasons, we require that p ∈ (n − 1, n). Set

Eε(t, x) := E(t, x) +
∑

y∈O

D(x; y, ε).

SULLIVAN & Theil (Caltech & Warwick) Gradient Descents in Wiggly Energies 15 March 2010 @ MFO 15 / 24



Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Set-Up

For simplicity, we consider a moving quadratic energy
E(t, x) := 1

2x · Ax − ℓ(t) · x, A ∈ R
n×n postive definite, ℓ Lipschitz.

We randomly “dent” E by adding to it the dent function

D(x; y, ε) :=
σ

2

(

∣

∣

∣

∣

x − y

ε

∣

∣

∣

∣

2

− 1

)

−

for y ∈ the points of a dilute Poisson point process O of intensity
ε−p; for technical reasons, we require that p ∈ (n − 1, n). Set

Eε(t, x) := E(t, x) +
∑

y∈O

D(x; y, ε).

Since the dents are isotropic, we expect that the dissipation potential
for the hoped-for rate-independent limit will be isotropic as well; set
Ψ := σ| · |.
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Convergence Theorems n-Dimensional Convergence Theorem

n-Dimensional Convergence Theorem

Theorem (S. & T. 2009)

Let E, Eε, Ψ be as above, and

żε(t) = −
1

ε
∇Eε(t, zε(t)),

Ψ(ż(t)) ∋ −DE(t, z(t)).

Then zε → z in probability (and hence in distribution) in C0([0, T ]; Rn) as
ε → 0. That is, for any δ > 0,

P

[

sup
0≤t≤T

|zε(t) − z(t)| ≥ δ

]

→ 0 as ε → 0.

Hence, up to subsequences, zε → z uniformly on [0, T ], P-almost surely.
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Convergence Theorems A Sketch of the Proof

Strategy of the Proof

For [a, b] ⊆ [0, T ], define the energy surplus of u : [a, b] → R
n by the

L∞-lower semicontinuous functional ES(−, [a, b]) : BV([a, b]; Rn) → R

ES(u, [a, b]) :=

E(b, u(b)) − E(a, u(a)) +

∫ b

a

(Ψ(u̇(t)) − (∂tE)(t, u(t))) dt.

This is the amount by which the desired energy inequality fails to hold.
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Strategy of the Proof

For [a, b] ⊆ [0, T ], define the energy surplus of u : [a, b] → R
n by the

L∞-lower semicontinuous functional ES(−, [a, b]) : BV([a, b]; Rn) → R

ES(u, [a, b]) :=

E(b, u(b)) − E(a, u(a)) +

∫ b

a

(Ψ(u̇(t)) − (∂tE)(t, u(t))) dt.

This is the amount by which the desired energy inequality fails to hold.
We show that

(zε)ε>0 is tight (has a uniformly convergent subsequence);

lim infε→0 ES(zε, [0, T ]) ≤ 0;

any such uniform limit will satisfy stability;

uniqueness results (e.g. Mielke–T. 2004) for rate-independent
processes imply that the limit process must be z.
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Convergence Theorems A Sketch of the Proof

An Important Observation

It follows from the set-up that if zε enters a dent Bε(y), y ∈ O, and
that dent is stable is contained within the stable region, then zε

cannot leave Bε(y). Moreover, zε leaves Bε(y) precisely at

τout = inf{t | Bε(y) ∩ S(t) = ∅}.
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Convergence Theorems A Sketch of the Proof

An Important Observation

It follows from the set-up that if zε enters a dent Bε(y), y ∈ O, and
that dent is stable is contained within the stable region, then zε

cannot leave Bε(y). Moreover, zε leaves Bε(y) precisely at

τout = inf{t | Bε(y) ∩ S(t) = ∅}.

This observation helps to keep everything under control: even though
zε falls from one dent to another at speed ∼ 1

ε
, it must then remain

in a dent for a time period inversely proportional to the distance
fallen, where it waits for ∂S(t) to “catch up”.
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Convergence Theorems A Sketch of the Proof

Dent Entry and Exit Times

∂S(τout
i ) ∂S(τout

i+1) ∂S(τout
i+2)

zε(τ
in
i+1)

zε(τ
out
i+1)

Figure: A “top-down” schematic illustration of zε (blue). The frontier of the
stable region is shown in green at the three exit times; everything to the right of
the green line is the stable region at that time. Dents are shown as black circles.
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Convergence Theorems A Sketch of the Proof

Dent Entry and Exit Times

t
τout
i+1τ in

i+1τout
i

Dent

Stable region
R

n

Figure: A “cross-sectional” schematic illustration of zε (blue). The frontier of the
stable region is shown in green, and the piecewise-constant càdlàg solution to the
Moreau–Yosida incremental formulation of the rate independent problem is shown
in red.
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

In what follows, for simplicity, it will be assumed that dents never
overlap.

In practice, overlaps can happen, and one must use statistical
properties of the Poisson point process O to ensure that they do not
happen “too often” and thereby ruin the total variation estimates.

One could condition the process O to rule out overlaps (e.g. Matérn
clustering and hard core processes), but would thereby lose explicit
representation of the distance-to-nearest-neighbour distribution.
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Asymptotic stability is easy to get, and tightness will follow from the
energy estimates. The following lemma controls the energy surplus:

Lemma (Variation and energy surplus control)

If zε|[a,b] lies wholly outside all dents, then

∣

∣Var[a,b](zε) − |zε(b) − zε(a)|
∣

∣ ≤ C

(

|b − a|

‖A‖
+

|b − a|2

ε

)

,

and if zε|[a,b] lies wholly inside a dent, then

Var[a,b](zε) ≤ Cε.

Hence,

ES(zε, [τ
out
i , τout

i+1]) ≤ Cε +
C ′σ|τ in

i+1 − τout
i |2

ε
.
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Armed with

ES(zε, [τ
out
i , τout

i+1]) ≤ Cε +
C ′σ|τ in

i+1 − τout
i |2

ε
,

we just need to make sure that the rapid descents don’t last too long, and
that there are not so many of them that all these order ε errors will
accumulate and ruin all our estimates as we take the limit ε → 0. We get
this control from the observation about waiting times and the distribution
of the Poisson point process O:
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Convergence Theorems A Sketch of the Proof

Sketch of the Proof

Armed with

ES(zε, [τ
out
i , τout

i+1]) ≤ Cε +
C ′σ|τ in

i+1 − τout
i |2

ε
,

we just need to make sure that the rapid descents don’t last too long, and
that there are not so many of them that all these order ε errors will
accumulate and ruin all our estimates as we take the limit ε → 0. We get
this control from the observation about waiting times and the distribution
of the Poisson point process O:

Proposition (Energy surplus goes to zero in mean square)

E
[

ES(zε, [0, T ])
]

≤ CTεp−n+1 → 0,

V
[

ES(zε, [0, T ])
]

≤ CTεp−n+2 → 0.
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Conclusions and Outlook

Conclusions and Outlook

To conclude, we have rigorously established a passage from a viscous
evolution in a random energy landscape to a rate-independent evolution in
the limit of the random landscape.
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Conclusions and Outlook

Conclusions and Outlook

To conclude, we have rigorously established a passage from a viscous
evolution in a random energy landscape to a rate-independent evolution in
the limit of the random landscape.

What’s next?

Anisotropic dents and dissipation potentials.

Perturbations/dents without a priori bounds on ∇(Eε − E).

Extension to energies that are more general than quadratic forms?
What if E is only uniformly convex? What about strictly convex,
convex, or non-convex energies?

Extension to infinite-dimensional spaces Z?
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