Thermalization of Rate-Independent Processes by Entropic Regularization

Tim Sullivan

California Institute of Technology, U.S.A.

Interplay of Analysis and Probability in Physics Mathematisches Forschungsinstitut Oberwolfach 22–28 January 2012

Joint work with **M. Koslowski** (Purdue), **F. Theil** (Warwick) and **M. Ortiz** (Caltech).

• Gradient descent on a connected Riemannian manifold (Q, g) in an energetic potential $E: [0, T] \times Q \rightarrow \mathbb{R}$ with respect to a dissipation potential $\Psi: [0, T] \times TQ \rightarrow [0, +\infty)$:

$$\partial \Psi(t, z(t), \dot{z}(t)) \ni -\mathrm{D}E(t, z(t)).$$
 (RI)

- Each Ψ(t, x, ·) is 1-homogenous: the dissipation is a Finsler structure on Q, continuous and non-degenerate w.r.t. g. This makes the evolution rate-independent (a.k.a. quasi-static): the solution operator commutes with monotone reparametrizations of time.
- (RI) models stick-slip dynamics, dry friction, evolution of some material properties (*e.g.* the Barkhausen effect in magnetization).
- We analyse a positive-temperature perturbation of (RI). As an application, this model explains the creep effects shown by such systems at positive temperature.

Incremental Problem

• The discrete time incremental formulation of (RI) is, given times $\{t_i = ih \mid i = 0, ..., T/h\}$ and the state z_i at time t_i , to find the state z_{i+1} at time t_{i+1} that minimizes

$$W(z_i, z_{i+1}) := E(t_{t+1}, z_{i+1}) - E(t_i, z_i) + h\Psi(\operatorname{Log}_{z_i}(z_{i+1})/h).$$

• The discrete time incremental formulation of (RI) is, given times $\{t_i = ih \mid i = 0, ..., T/h\}$ and the state z_i at time t_i , to find the state z_{i+1} at time t_{i+1} that minimizes

$$W(z_i, z_{i+1}) := E(t_{t+1}, z_{i+1}) - E(t_i, z_i) + h\Psi(\operatorname{Log}_{z_i}(z_{i+1})/h).$$

• To model the effect of a heat bath with power $\theta > 0$ (*i.e.* injects energy θh over $[t_i, t_{i+1}]$), we posit that the random next state Z_{i+1}^h has probability distribution $\rho(\cdot|z_i) \operatorname{dVol}_g$ on \mathcal{Q} that minimizes

$$\int_{\mathcal{Q}} \left[W(z_i, \cdot)\rho(\cdot|z_i) + \theta h \,\rho(\cdot|z_i) \log \rho(\cdot|z_i) \right] d\mathrm{Vol}_g$$

i.e. $\rho(z_{i+1}|z_i) \propto \exp\left(-\frac{W(z_i, z_{i+1})}{\theta h}\right)$

and consider the Markov chain Z^h with such transition probabilities.
For 2-homogeneous Ψ, this procedure corresponds to adding Itō noise. What is the continuous-time limit for 1-homogeneous Ψ?

Incremental Distribution

Quick back-of-envelope calculations in $T_{z_i}\mathcal{Q}$ yield

$$\mathbb{E}\left[\mathrm{Log}_{z_i}(Z_{i+1})\big|Z_i=z_i\right]\approx -\theta h \,\mathrm{D}\widetilde{\Psi}^{\star}(t_i,z_i,\mathrm{D}E(t_i,z_i)),$$

 $\mathbb{V}\left[\mathrm{Log}_{z_i}(Z_{i+1})\big|Z_i=z_i\right]\approx (\theta h)^2 \,\mathrm{D}^2 \widetilde{\Psi}^{\star}(t_i,z_i,\mathrm{D}E(t_i,z_i)).$

Conjecture

The variance is essentially negligible, and so the limit process as $h \to 0$ is a deterministic flow along the vector field on the RHS of the expression for the mean:

$$\begin{split} \dot{y}(t) &= -\theta \, \mathrm{D} \widetilde{\Psi}^{\star} \big(t, y(t), \mathrm{D} E(t, y(t)) \big), \\ i.e. \quad \mathrm{D} \widetilde{\Psi} \big(t, y(t), -\theta^{-1} \dot{y}(t) \big) &= \mathrm{D} E(t, y(t)), \end{split} \tag{NL}$$
(If Ψ is even)
$$\mathrm{D} \widetilde{\Psi} \big(t, y(t), \theta^{-1} \dot{y}(t) \big) &= -\mathrm{D} E(t, y(t)), \end{split}$$

i.e. the non-linear $\widetilde{\Psi}$ -gradient descent in E.

Definitions

The effective dissipation potential $\widetilde{\Psi}$ on the previous slide is the Cramer transform of Ψ , defined for each $(t, x) \in [0, T] \times \mathcal{Q}$ by

$$\begin{split} \widetilde{\Psi}^{\star}(t,x,\ell) &:= \log \int_{\mathrm{T}_x \mathcal{Q}} \exp\left(-\left(\langle \ell, v \rangle + \Psi(t,x,v)\right)\right) \mathrm{d}v, \quad \ell \in \mathrm{T}_x^* \mathcal{Q}, \\ \widetilde{\Psi}(t,x,v) &:= \sup\left\{\langle \ell, v \rangle - \widetilde{\Psi}^{\star}(t,x,\ell) \,\middle| \, \ell \in \mathrm{T}_x^* \mathcal{Q}\right\}, \qquad v \in \mathrm{T}_x \mathcal{Q}. \end{split}$$

Thermalization of Rate-Indep. Processes

Convergence Theorem

Theorem

Under technical conditions, the piecewiseconstant interpolants of the discrete time Markov chain Z^h converge in probability as $h \rightarrow 0$ to y, the solution of (NL), i.e.

$$\mathrm{D}\widetilde{\Psi}(t,y(t),-\theta^{-1}\dot{y}(t))=\mathrm{D}E(t,y(t))$$

with the same initial condition. That is, for all $\delta > 0$,

$$\lim_{h \to 0} \mathbb{P}\left[\sup_{t \in [0,T]} d_{(\mathcal{Q},g)} (Z^h(t), y(t)) \ge \delta\right] = 0.$$

Figure: Comparison of the original rateindependent process z (blue) that solves (RI) and the thermalized process y (red) that solves (NL).

(b)
$$\theta = \frac{1}{10}$$

• Main technical condition (for the moment!): the vector field

$$f(t,x) := -\mathbf{D}\widetilde{\Psi}^{\star}(t,x,\mathbf{D}E(t,x))$$

should admit a spacetime neighbourhood of the solution y in which, for any two initial conditions (t, x) and (t, x') and small enough h > 0,

 $d_{(\mathcal{Q},g)}\left(\operatorname{Exp}_{x}(hf(t,x)),\operatorname{Exp}_{x'}(hf(t,x'))\right) \leq d_{(\mathcal{Q},g)}(x,x').$

- This is can be seen as a combination of two criteria:
 - the vector field f should not be outward-pointing;
 - the curvature of (Q, g) should not be strongly positive.

Application: Andrade Creep

Andrade's creep law (1910)

For soft metals under constant subcritical stress, strain grows initially $\sim t^{1/3}$ and later $\sim t$.

- Work on $Q = (0, +\infty)$ with energy gradient $DE(t, x) \equiv \ell$ and the Finsler dissipation $\Psi(t, x, v) = \sigma x |v|$, *i.e.* linear strain hardening.
- Solutions to the effective evolution (NL)

$$y(0) = 1$$
, $D\widetilde{\Psi}(t, y(t), -\theta^{-1}\dot{y}(t)) = \ell$
i.e. $\dot{y}(t) = \frac{2\theta\ell}{(\sigma y(t))^2 - \ell^2}$

do indeed grow $\sim t^{1/3}$, in accordance with Andrade's creep law:

$$y(t) = \left(C + \frac{6\theta\ell t}{\sigma^2}\right)^{1/3}$$