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Problem Setting

Gradient descent on a connected Riemannian manifold (Q, g) in an
energetic potential E : [0, T ]×Q → R with respect to a dissipation
potential Ψ: [0, T ] × TQ → [0,+∞):

∂Ψ(t, z(t), ż(t)) ∋ −DE(t, z(t)). (RI)

Each Ψ(t, x, ·) is 1-homogenous: the dissipation is a Finsler structure
on Q, continuous and non-degenerate w.r.t. g. This makes the
evolution rate-independent (a.k.a. quasi-static): the solution operator
commutes with monotone reparametrizations of time.

(RI) models stick-slip dynamics, dry friction, evolution of some
material properties (e.g. the Barkhausen effect in magnetization).

We analyse a positive-temperature perturbation of (RI). As an
application, this model explains the creep effects shown by such
systems at positive temperature.
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Incremental Problem

The discrete time incremental formulation of (RI) is, given times
{ti = ih | i = 0, . . . , T/h} and the state zi at time ti, to find the
state zi+1 at time ti+1 that minimizes

W (zi, zi+1) := E(tt+1, zi+1)− E(ti, zi) + hΨ
(
Logzi(zi+1)

/
h
)
.
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W (zi, zi+1) := E(tt+1, zi+1)− E(ti, zi) + hΨ
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Logzi(zi+1)

/
h
)
.

To model the effect of a heat bath with power θ > 0 (i.e. injects
energy θh over [ti, ti+1]), we posit that the random next state Zh

i+1

has probability distribution ρ(·|zi) dVolg on Q that minimizes
∫

Q

[
W (zi, ·)ρ(·|zi) + θh ρ(·|zi) log ρ(·|zi)

]
dVolg

i.e. ρ(zi+1|zi) ∝ exp

(
−
W (zi, zi+1)

θh

)

and consider the Markov chain Zh with such transition probabilities.
For 2-homogeneous Ψ, this procedure corresponds to adding Itō
noise. What is the continuous-time limit for 1-homogeneous Ψ?
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Incremental Distribution

Quick back-of-envelope calculations in TziQ yield

E
[
Logzi(Zi+1)

∣∣Zi = zi
]
≈ −θhDΨ̃⋆

(
ti, zi,DE(ti, zi)

)
,

V
[
Logzi(Zi+1)

∣∣Zi = zi
]
≈ (θh)2 D2Ψ̃⋆

(
ti, zi,DE(ti, zi)

)
.

Conjecture

The variance is essentially negligible, and so the limit process as h → 0 is
a deterministic flow along the vector field on the RHS of the expression for
the mean:

ẏ(t) = −θDΨ̃⋆
(
t, y(t),DE(t, y(t))

)
,

i.e. DΨ̃
(
t, y(t),−θ−1ẏ(t)

)
= DE(t, y(t)), (NL)

(If Ψ is even) DΨ̃
(
t, y(t), θ−1ẏ(t)

)
= −DE(t, y(t)),

i.e. the non-linear Ψ̃-gradient descent in E.
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Effective Dissipation — Cramer Transform

Definitions

The effective dissipation potential Ψ̃ on the previous slide is the Cramer
transform of Ψ, defined for each (t, x) ∈ [0, T ]×Q by

Ψ̃⋆(t, x, ℓ) := log

∫

TxQ

exp
(
− (〈ℓ, v〉+Ψ(t, x, v))

)
dv, ℓ ∈ T∗

xQ,

Ψ̃(t, x, v) := sup
{
〈ℓ, v〉 − Ψ̃⋆(t, x, ℓ)

∣∣∣ ℓ ∈ T∗
xQ

}
, v ∈ TxQ.

Example

Ψ(v) := σ‖v‖2 on R
n, σ > 0,

Ψ̃⋆(ℓ) = −
n+ 1

2
log

(
σ2 − ‖ℓ‖22

)
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Convergence Theorem

Theorem

Under technical conditions, the piecewise-

constant interpolants of the discrete time

Markov chain Zh converge in probability as

h → 0 to y, the solution of (NL), i.e.

DΨ̃(t, y(t),−θ−1ẏ(t)) = DE(t, y(t))

with the same initial condition. That is, for

all δ > 0,

lim
h→0

P

[
sup

t∈[0,T ]
d(Q,g)

(
Zh(t), y(t)

)
≥ δ

]
= 0.

Figure: Comparison of the original rate-
independent process z (blue) that solves (RI) and
the thermalized process y (red) that solves (NL).
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Technical Conditions

Main technical condition (for the moment!): the vector field

f(t, x) := −DΨ̃⋆
(
t, x,DE(t, x)

)

should admit a spacetime neighbourhood of the solution y in which,
for any two initial conditions (t, x) and (t, x′) and small enough h > 0,

d(Q,g)

(
Expx(hf(t, x)),Expx′(hf(t, x′))

)
≤ d(Q,g)(x, x

′).

This is can be seen as a combination of two criteria:
◮ the vector field f should not be outward-pointing;
◮ the curvature of (Q, g) should not be strongly positive.

bx b x′

f(t, x) f(t, x′)

bx b x′

f(t, x) f(t, x′)
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Application: Andrade Creep

Andrade’s creep law (1910)

For soft metals under constant subcritical stress, strain
grows initially ∼ t1/3 and later ∼ t.

Work on Q = (0,+∞) with energy gradient DE(t, x) ≡ ℓ and the
Finsler dissipation Ψ(t, x, v) = σx|v|, i.e. linear strain hardening.

Solutions to the effective evolution (NL)

y(0) = 1, DΨ̃(t, y(t),−θ−1ẏ(t)) = ℓ

i.e. ẏ(t) =
2θℓ

(σy(t))2 − ℓ2

do indeed grow ∼ t1/3, in accordance with Andrade’s creep law:

y(t) =

(
C +

6θℓt

σ2

)1/3

.
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