Thermalization of rate-independent processes by entropic regularization

Tim Sullivan
(joint work with Marisol Koslowski, Florian Theil and Michael Ortiz)

Many evolutionary problems of interest take the form of a gradient descent; a trajectory that is the steepest descent in a space Q of an energy functional E with respect to some dissipation functional Ψ. The state space Q is, in general, a metric space that may lack any linear or differentiable structure [1]. Typically, the dissipation potential Ψ is assumed to have superlinear growth at infinity; if instead Ψ is homogeneous of degree 1, then the resulting evolutionary system is rate-independent (or quasi-static) in the sense that the solution operator commutes with strictly increasing reparametrizations of time. Rate-independent processes model hysteretic phenomena such as plasticity and phase transformations in elastic solids, electromagnetism, dry friction on surfaces, and pinning problems in superconductivity; such models are limiting models in the limit of vanishing inertia, relaxation times, and thermal effects [5].

We consider a model for the influence of a heat bath upon a rate-independent evolution that takes values in a (finite-dimensional, smooth) Riemannian manifold (Q,g) over an interval of time $[0,T]$. The energetic potential is $E: [0,T] \times Q \to \mathbb{R}$; the dissipation potential is $\Psi: [0,T] \times \mathcal{T}Q \to [0,\infty)$ and is assumed to be continuous, convex, non-degenerate and homogeneous of degree 1 on each tangent space — i.e. Ψ defines a time-dependent Finsler metric on Q.

Given $h > 0$ and discrete times $(t_i := ih)_{i=0}^{T/h}$, the incremental variational formulation of the rate-independent problem is to find states $(z_i)_{i=0}^{T/h} \subseteq Q$ such that each z_{i+1} minimizes

\[
W(z_i, z_{i+1}) := E(t_{i+1}, z_{i+1}) - E(t_i, z_i) + h\Psi\left(\log_{z_i} z_{i+1}/h\right),
\]

where \log_{z_i} denotes the inverse of the exponential map \exp_{z_i} from T_zQ into Q. The continuous-time rate-independent process $z: [0,T] \to Q$ is the limit as $h \to 0$ of the interpolants of the solutions to (1), and is the Ψ-gradient descent in E:

$D\Psi(t, z(t), \dot{z}(t)) \ni -DE(t, z(t))$.

We posit a Markov chain model for the effect of a heat bath working with constant power $\theta > 0$ (i.e. the heat bath supplies energy proportional to θh over each subinterval $[t_i, t_{i+1}]$): we consider the Q-valued Markov chain Z^h with transition probabilities having density

\[
\rho(z_{i+1}|z_i) \propto \exp\left(-W(z_i, z_{i+1})/\theta h\right)
\]

with respect to the Riemannian volume measure $d\text{Vol}_{(Q,g)}$. This density has the variational characterization that it minimizes

\[
\int_Q \left(W(z_i, \cdot) + \theta h \rho(\cdot|z_i) \log \rho(\cdot|z_i)\right) d\text{Vol}_{(Q,g)};
\]
and so the Markov chain model can be seen as a competition between the energetic considerations (1) of the original gradient descent and entropic considerations. The natural objective is to identify the continuous-time limit process of Z^h as $h \to 0$.

If Ψ is homogeneous of degree 2, then the scheme (2) corresponds to the addition of Itô noise to generate a stochastic gradient descent in E as in [4]. Our main result is that when Ψ is homogeneous of degree one, although Z^h is a stochastic process with non-trivial distribution for each $h > 0$, the limit process as $h \to 0$ is a deterministic rate-dependent process. Furthermore, the limit process is, up to sign, a gradient descent in E with respect to a new, nonlinear, dissipation potential $\tilde{\Psi}: [0, T] \times TQ \to [0, +\infty)$.

More precisely, let Ψ denote the Cramer transform of Ψ, defined by

\[
\tilde{\Psi}^*(t, x, \ell) := \log \int_{T^*_x Q} \exp \left(- (\langle \ell, v \rangle + \Psi(t, x, v)) \right) dv \quad \text{for } \ell \in T^*_x Q,
\]

\[
\tilde{\Psi}(t, x, v) := \sup \left\{ (\ell, v) - \tilde{\Psi}^*(t, x, \ell) \big| \ell \in T^*_x Q \right\} \quad \text{for } v \in T_x Q.
\]

The Cramer transform $\tilde{\Psi}$ is a strict convexification and smoothing-out of Ψ. It exhibits quadratic behaviour near the origin (slow evolutionary rates) and linear growth at infinity (fast evolutionary rates); see Figure 1.

The limit process of Z^h as $h \to 0$ is the solution $y: [0, T] \to Q$ of

\[
D\tilde{\Psi}(t, y(t), -\dot{y}(t)/\theta) = DE(t, y(t)),
\]

and, under suitable conditions, Z^h converges to y in probability as $h \to 0$, i.e.

\[
\lim_{h \to 0} P \left[\sup_{t \in [0, T]} d(\mathcal{Q}, \mathcal{D}) (Z^h(t), y(t)) \geq \delta \right] = 0 \quad \text{for every } \delta > 0.
\]
The intuition behind this result is that, to a first approximation,
\[
E[\log_z Z_{i+1}^h | Z_i^h = z_i] \approx -\theta h \tilde{D} \Psi^*(t_i, z_i, DE(t_i, z_i)),
\]
and so the variance is expected to be negligible in the limit as \(h \to 0 \), leaving only the mean flow (5). The principal condition necessary to ensure the convergence (6) is that the curvature of \((Q, g)\) and the vector field \(f(t, x) := -\tilde{D} \Psi^*(t, x, DE(t, x)) \) be such that geodesics starting at \((t, x)\) and \((t, x')\) near to the trajectory of \(y \) with initial velocities given by \(f(t, x) \) and \(f(t, x') \) do not diverge too quickly. When \(Q = \mathbb{R}^n \) with its usual metric, this corresponds to the requirement that \(f \) be a monotone vector field \([7]\), at least near the trajectory of \(y \).

As shown in \([6]\), this result predicts rheological power laws such as the Andrade creep law for soft metals. Andrade \([2, 3]\) observed that soft metals exposed to constant subcritical applied stress at room temperature exhibited strain \(\sim t^{1/3} \) for short time, and \(\sim t \) in long time. Under the assumption of linear strain hardening and constant applied load — i.e. the dissipative potential \(\Psi(t, x, v) \) is \(x|v| \) on \(Q = (0, +\infty) \) and energetic potential \(E(t, x) = -\ell x \) with \(|\ell| < 1\) — Andrade’s law appears naturally, since in this setting solutions to (5) do indeed grow \(\sim t^{1/3} \).

This example justifies posing the problem on a manifold with state-dependent dissipation functional instead of the simpler setting of \(\mathbb{R}^n \) with a state-independent dissipation functional: the Andrade creep law would not be obtained in the simpler setting. Furthermore, some rate-independent problems on \(\mathbb{R}^n \) have a dissipation functional \(\Psi \) that is 0 or \(+\infty \) in some directions; restricting attention to a submanifold of \(\mathbb{R}^n \) on which \(\Psi \) is well-behaved can circumvent these difficulties.

It would be of interest to extend the above results to evolutions in spaces without a locally linear, smooth, or finite-dimensional structure, as in \([1]\).

References

