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Introduction

Introduction

applied
mathematics

probability
& statistics

scientific
computation

applied
sciences

uncertainty quantification

“UQ is the end-to-end study of the
reliability of scientific inferences.”

UQ is naturally about information flow.

Ideally, the computed relationships between
pieces of information should be as sharp as
possible.

Grand Challenges

multiphysics modelling
nuclear physics
materials science

chemistry
science of nonproliferation
uncertainty quantification
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Introduction

Prototypical UQ Problem: Reliability Certification

G0 : X → Y is a system of interest, with random inputs X distributed
according to a probability measure µ0 on X .

For some subset F ⊆ Y, the event [G0(X) ∈ F ] constitutes failure;
we want to know the probability of failure

Pµ0

[
G0(X) ∈ F

]
≡ Eµ0

[
1

[
G0(X) ∈ F

]]

︸ ︷︷ ︸

“just” an integral
to be evaluated
— directly?
— by MC?
— by gPC?

,

or at least to know that it is acceptably small (or unacceptably large!).

Problem: In practical applications, one does not know the Universe’s
G0 and µ0 exactly!
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Introduction

Other Quantities of Interest

For some quantity of interest (measurable function) q : X × Y → R,
we want to know

Eµ0

[
q(X,G0(X))

]]

︸ ︷︷ ︸

“just” an integral
to be evaluated
— directly?
— by MC?
— by gPC?

,

or at least to know that it is acceptably small (or unacceptably large!).

For example:
◮ failure probability: q(x, y) = 1[y ∈ F ],
◮ mean performance: q(x, y) = y,
◮ variance about a nominal output value: q(x, y) = |y − y0|

2.

Our interest lies in understanding Eµ0

[
q(X,G0(X))

]
when G0 and µ0

are only imperfectly known (i.e. epistemic uncertainty), and to obtain
bounds that are optimal with respect to the known information.
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The Optimal UQ Framework General Idea

Optimal UQ

The initial step in the Optimal Uncertainty Quantification approach is
specifying a feasible set of admissible scenarios (g, µ) that could be
(G0, µ0) according to the available information:

A =






(g, µ)

∣
∣
∣
∣
∣
∣

(g, µ) is consistent with the current
information about (G0, µ0)

(e.g. legacy data, models, theory, expert judgement)






.

A priori, all we know about reality is that (G0, µ0) ∈ A; we have no
idea exactly which (g, µ) in A is actually (G0, µ0).

◮ No (g, µ) ∈ A is “more likely” or “less likely” to be (G0, µ0).
◮ Particularly in high-consequence settings, it makes sense to adopt a

posture of healthy conservatism and determine the best and worst
outcomes consistent with the information encoded in A.

Dialogue between UQ practitioners and the domain experts is
essential in formulating — and revising — A.
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The Optimal UQ Framework General Idea

Optimal UQ

A =

{

(g, µ)

∣
∣
∣
∣

(g, µ) is consistent with the current
information about (i.e. could be) (G0, µ0)

}

Optimal bounds (w.r.t. the information encoded in A) on the quantity
of interest Eµ0

[q(X,G0(X))] are found by minimizing/maximizing
Eµ[q(X, g(X))] over all admissible scenarios (g, µ) ∈ A:

Q(A) ≤ Eµ0
[q(X,G0(X))] ≤ Q(A),

where Q(A) and Q(A) are defined by the optimization problems

Q(A) := inf
(g,µ)∈A

Eµ[q(X, g(X))],

Q(A) := sup
(g,µ)∈A

Eµ[q(X, g(X))].

Cf. generalized Chebyshev inequalities in decision analysis (Smith
(1995)), imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex*,
highly-constrained, global
optimization problems.

However, they can be reduced to
equivalent finite-dimensional
problems in which the
optimization is over the extremal
scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC
A

ex(A)

Figure : A linear functional on a
convex domain in Rn finds its
extreme value at the extremal
points of the domain; similarly,
OUQ problems reduce to
searches over finite-dimensional
families of extremal scenarios.

*But see e.g. Bertsimas & Popescu (2005) and Smith (1995) for convex special cases.
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Heuristic

Heuristic

If you have Nk pieces of information relevant to the random variable Xk,
then just pretend that Xk takes at most Nk + 1 values in Xk.

To make this heuristic rigorous, we restrict attention to Radon spaces,
“nice” spaces on which every Borel probability measure is inner
regular. (Polish =⇒ Radon)
Our theorem builds on now-classical results by von Weizsäcker &
Winkler (1980) and Winkler (1988) characterizing the extremal
measures in moment classes, and “nice” linear/affine functionals on
such classes.
Important point: the extremal measures of a moment class

{
µ ∈ P(X )

∣
∣Eµ[ϕ1] ≤ 0, . . . ,Eµ[ϕn] ≤ n

}

are the discrete measures that have support on at most n+ 1 distinct
points of X , which we denote by ∆n(X ).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Theorem

Heuristic

If you have Nk pieces of information relevant to the random variable Xk,
then just pretend that Xk takes at most Nk + 1 values in Xk.

Theorem (Generalized moment and indep. constraints)

Suppose that X := X1 × · · · × XK is a product of Radon spaces. Let

A :=







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g : X → R is measurable, µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk);
〈conditions on g alone〉; and, for each g,

for some measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R,

Eµ

[
ϕi

]
≤ 0 for i = 1, . . . , n0,

Eµk

[
ϕ
(k)
i

]
≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K







A∆ :=

{

(g, µ) ∈ A

∣
∣
∣
∣

µk ∈ ∆Nk
(Xk)

where Nk := n0 + nk

}

⊆ A.

Then Q(A) = Q(A∆) and Q(A) = Q(A∆).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Consequence

Heuristic

If you have Nk pieces of information relevant to the random variable Xk,
then just pretend that Xk takes at most Nk + 1 values in Xk.

Computation of the OUQ bounds Q(A) and Q(A) is equivalent to
finite-dimensional problems in which the optimization variables are

◮ the positions of the support points xi ∈ X of the discrete measure µ;
◮ the weights wi ∈ [0, 1] of the points xi; and
◮ the response values yi ∈ Y corresponding to g(xi).

with objective function

(N1,...,NK)
∑

i=(0,...,0)

wi q(xi, yi)

and similar finite sums for the constraints.
=⇒ Implementation in the general-purpose open-source Mystic
optimization framework, written in Python.
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Chebyshev’s Inequality in OUQ Form

ACh :=
{
µ ∈ P(R)

∣
∣Eµ[X] = 0 and Eµ[X

2] ≤ σ2
}

P (ACh) := sup
µ∈ACh

Pµ[|X| ≥ t] =
σ2

t2
.
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Chebyshev’s Inequality in OUQ Form

ACh :=
{
µ ∈ P(R)

∣
∣Eµ[X] = 0 and Eµ[X

2] ≤ σ2
}

P (ACh) := sup
µ∈ACh

Pµ[|X| ≥ t] =
σ2

t2
.

How about other deviation/concentration-of-measure inequalities?

McDiarmid’s inequality: deviations from the mean of
bounded-differences functions of independent random variables.

Hoeffding’s inequality: deviations from the mean of sums of
independent random variables.

Samuels’ conjecture: deviations of sums of non-negative independent
random variables with given means.
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The Optimal UQ Framework Optimal Concentration Inequalities

McDiarmid’s Inequality

AMcD :=







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : X := X1 × · · · × XK → R,

µ =
⊗K

k=1 µk, (i.e. X1, . . . , XK independent)
Eµ[g(X)] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}







,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{

|g(x) − g(x′)|

∣
∣
∣
∣

x, x′ ∈ X1 × · · · × XK ,
xi = x′i for i 6= k

}

.

Theorem (McDiarmid’s Inequality, 1988)

P (AMcD) := sup
(g,µ)∈AMcD

Pµ[g(X) ≤ 0]
!!!
≤ exp

(

−
2m2

∑K
k=1D

2
k

)
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid for K = 1, 2)

For K = 1,

P (AMcD) =







0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2,

P (AMcD) =







0, if D1 +D2 ≤ m,

(D1 +D2 −m)2

4D1D2
, if |D1 −D2| ≤ m ≤ D1 +D2,

1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

In the highlighted case, min{D1,D2} carries no information — not in the
sense of 0 bits, but the sense of being a non-binding constraint.
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal Hoeffding and the Effects of Nonlinearity

Similarly, one can consider AHfd “⊆”AMcD corresponding to the
assumptions of Hoeffding’s inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

AHfd :=







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : RK → R given by
g(x1, . . . , xK) := x1 + · · · + xK ,

µ = µ1 ⊗ · · · ⊗ µK supported on a cuboid of
side lengths D1, . . . ,DK , and Eµ[g(X)] ≥ m ≥ 0







.

Hoeffding’s inequality is the bound

P (AHfd) := sup
(g,µ)∈AHfd

Pµ[g(X) ≤ 0] ≤ exp

(

−
2m2

∑K
k=1D

2
k

)

.

Interestingly, P (AHfd) = P (AMcD) for K = 1 and K = 2, but
P (AHfd) ≤ P (AMcD) for K = 3, and the inequality can be strict.
Thus, sometimes linearity is binding information, sometimes not.
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The Optimal UQ Framework Seismic Safety Certification

Seismic Safety Certification

Consider the survivability of a truss structure
under an random earthquake of known
intensity drawn from an incompletely
specified probability distribution.

Consider a random ground motion u, with the
constraint that the mean power spectrum is
the Matsuda–Asano shape function sMA:

Eu∼µ

[
|û(ω)|2

]
= sMA(ω) ∝

ω2
gω

2eML

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.

Such shape functions are a common tool in
the seismological community, but usually u is
generated by filtering white noise through s.

We used 200 3d Fourier modes, leading to a
1200-dimensional OUQ problem.
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The Optimal UQ Framework Seismic Safety Certification

Numerical Vulnerability Curves (CDF Envelopes)

min and max
probability
of failure
over AMA

Richter magnitude, ML
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Figure : The minimum and maximum probability of failure as a function of
Richter magnitude, ML, where the ground motion u is constrained to have
Eµ[|û|

2] = the Matsuda–Asano shape function sMA with natural frequency ωg and
natural damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data
point required ≈ 1 day on 44+44 AMD Opterons (shc and foxtrot at Caltech).
The forward model used 200 Fourier modes for a 3-dimensional ground motion u.
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is non-trivial.

Figure : The minimum and maximum probability of failure as a function of
Richter magnitude, ML, where the ground motion u is constrained to have
Eµ[|û|

2] = the Matsuda–Asano shape function sMA with natural frequency ωg and
natural damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data
point required ≈ 1 day on 44+44 AMD Opterons (shc and foxtrot at Caltech).
The forward model used 200 Fourier modes for a 3-dimensional ground motion u.

Tim Sullivan (Warwick) Optimal Uncertainty Quantification INI, 27 Mar. 2013 20 / 36



The Optimal UQ Framework Legacy Data and Modelled Systems

Other Completed or In-Progress Applications

Hypervelocity impact (e.g. micrometeorites) given legacy data.

Hypervelocity impact with a detailed multi-physics mechanical model.

Optimal control of magnetically induced localized hyperthermia for
the non-invasive treatment of brain tumours.

Design of graphene + noble metal sandwich structures for light
weight and low loss plasmonics applications.

Skip Details
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The Optimal UQ Framework Legacy Data and Modelled Systems

OUQ with Legacy Data

An interesting class of admissible function-measure pairs arises in the
case of partially observed smooth enough functions, e.g.

A =






(g, µ)

∣
∣
∣
∣
∣
∣

g : X → R has prescribed modulus of continuity,
g = G0 on O ⊆ X (i.e. some legacy data),
µ ∈ P(X ), Eµ[ϕi] ≤ 0 for i = 1, . . . , n







Note that O need not be statistically representative.

Simple examples of “smooth enough” modulus of continuity include
Lipschitz constants or Hölder conditions.

Mathematically interesting interactions between the measure-theoretic
constraints and the metric geometry of the space X , e.g. the fact
that any Lipschitz function on the support of a discrete measure
µ ∈ ∆n(X ) can be extended to the whole space without changing the
Lipschitz constant (McShane (1934)).
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The Optimal UQ Framework Legacy Data and Modelled Systems

One Random Parameter, One Data Point

The case of a single observation in 1d can be solved explicitly.
Suppose that you have one observation (z,G0(z)) ∈ [0, 12 ]× R of a
function G0 : [0, 1]→ R with Lipschitz constant L ≥ 0.
Explicit piecewise and discontinuous least upper bound on
Pµ0

[G0(X) ≤ 0] given L, (z,G0(z)), and that Eµ0
[G0(X)] ≥ m:

Figure : Surface plot of the least upper bound P on Pµ0
[G0(X) ≤ 0], as a

function of the observed data point (z,G0(z)).
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The Optimal UQ Framework Legacy Data and Modelled Systems

3-Parameter Hypervelocity Impact Example

Legacy data = 32 data points (steel-on-aluminium shots A48–A81,
less two mis-fires) from summer 2010 at Caltech’s SPHIR facility:

X = (h, α, v) ∈ X := [0.062, 0.125] in × [0, 30] deg × [2300, 3200]m/s.

Output G0(h, α, v) = the induced perforation area in mm2; the data
set contains results between 6.31mm2 and 15.36mm2.

Failure event is [G0(h, α, v) ≤ θ], for various values of θ.

Constrain the mean perf. area: Eµ0
[G0(h, α, v)] ≥ m := 11.0mm2.

Modified Lipschitz constraint (multi-valued data):

L =

(
175.0

in
,
0.075

deg
,
0.1

m/s

)

mm2

|y − y′| ≤
3∑

k=1

Lk|xk − x′k|+ 1.0mm2.
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The Optimal UQ Framework Legacy Data and Modelled Systems

3-Parameter Hypervelocity Impact Example: Results
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Figure : Maximum probability that perforation area is ≤ θ, for various θ, with the
data and assumptions of the previous slide, including mean perforation area
E[G0(h, α, v)] ≥ 11.0mm2. For θ ≥ 2mm2, the results are within 10−6 of
Markov’s bound, which indicates that 2 binding data points are those that
constrain the maximum of the response function; the other 30 are non-binding.
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The Optimal UQ Framework Legacy Data and Modelled Systems

Models and Neighbourhoods

One can consider feasible sets in which the constraints on g are of the
form d(g, F ) ≤ C for some model function F .

Ffeasible

infeasible

bC
bC

R

X

Figure : Assuming that reality G0 is uniformly close to the model F means
assuming that the model has approximately the right cliffs in exactly the right
places; Hausdorff (graphical) closeness is a much looser assumption.
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The Optimal UQ Framework Dimensional Collapse and Acceleration

Dimensional Collapse and Acceleration

Often, the solutions of OUQ problems have lower dimension than the
reduction theorems might suggest.

As in the earlier McDiarmid example, the structure of the solutions
indicates the “key players” in the UQ problem.
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The Optimal UQ Framework Dimensional Collapse and Acceleration

Dimensional Collapse and Acceleration

Often, the solutions of OUQ problems have lower dimension than the
reduction theorems might suggest.

As in the earlier McDiarmid example, the structure of the solutions
indicates the “key players” in the UQ problem.

For example, the product probability measure on (h, α, v) that
maximizes the probability of non-perforation in the previous impact
example, given the mean perforation area (i.e. 1 constraint), has
support on 2× 1× 1 points, not all the available 2× 2× 2 points.

In the course of the calculation, observe two kinds of “collapses”:
◮ support points collide (distance between them tends to zero);
◮ probability masses of support points decay to zero.

CLPS is a module for the implementation of OUQ in Mystic that
◮ numerically detects these phenomena at runtime;
◮ pauses the optimizer and returns collapse metadata;
◮ restarts the calculation with the observed collapses as new constraints

=⇒ faster exploration of a lower-dimensional search space.
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The Optimal UQ Framework Dimensional Collapse and Acceleration

Numerical Effects of Dimensional Collapse

lo
g
1
0

∣ ∣
P

(n
)
−

P
∣ ∣

iteration, n
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0

0 100 200 300 400 500 600 700 800

Figure : Semi-log plot showing typical numerical convergence of the impact OUQ
problem with dimensionality 2× 2× 2 both without (green) and with (blue)
CLPS features. The vertical dashed blue lines indicate the occurrence of collapse
events. For comparison, the solid red line shows the numerical convergence of a
typical run with dimensionality 2× 1× 1.
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Numerical Effects of Dimensional Collapse

lo
g
1
0

∣ ∣ P
(n

)
−

P
∣ ∣

iteration, n

−8

−7

−6

−5

−4

−3

−2

−1

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Figure : Semi-log plot showing typical numerical convergence of the impact OUQ
problem with dimensionality 4× 4× 4 both without (green) and with (blue)
CLPS features. The vertical dashed blue lines indicate the occurrence of collapse
events. For comparison, the solid red line shows the numerical convergence of a
typical run with dimensionality 2× 1× 1.
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Optimal Knowledge Acquisition

Range of prediction given A:

R(A) := Q(A)−Q(A),

R(A) small ←→ A very predictive.

Let AE,c denote those scenarios in A
that are consistent with getting
outcome c from some experiment E.

The optimal next experiment E∗ solves
a minimax problem, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ sup
outcomes
c of E

R(AE,c).

bCbC
A

E1 E2
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Optimal Knowledge Acquisition

The “experiments” Ei of the previous slide could be
◮ actual physical experiments on the full system of interest;
◮ partial or subsystem experiments;
◮ simulations of same.

Thus, OUQ offers a systematic application of the scientific method to
drive experimental and computational campaigns in an optimal
goal-oriented fashion.

Like a good chess player, one could even plan many moves ahead,
i.e. plan an optimal experimental campaign — or discover that the
experiments are not worth doing at all!

What are the fundamental properties of this kind of “UQ game”?
— Open question
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Optimal Statistical Estimators

The natural next step for OUQ is to extend it to make optimal use of
random sample data.

Suppose that you are given some samples ξ1, . . . , ξn of a random
variable Ξ and have to use them to estimate some other quantity
Q(Ξ), e.g. to fit the coefficients of a model, or to make a prediction.

Paradigm I Prove a General(ish) Theorem

One can spend a lot of time and effort designing a good statistical
estimator or test, and proving its properties, e.g. χ2 test, BLUE, . . .

Paradigm II Compute for the Circumstances

Compute the optimal statistical estimator for your problem, a
schema-specific computed formula into which to plug ξ1, . . . , ξn.
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Analogy with Early Scientific Computing

Similarities between developments in the UQ community now and the
development of scientific computing in the era of von Neumann &al.
Transition from “compute a function for general application” to
“compute for the specific application”.

Paradigm I Paradigm II

PDEs Compute tables for spe-
cial functions, and couple
them with PDE ansätze

Discretize the PDE and
compute directly using
FE, FD, . . .

E.g. McD McDiarmid’s inequality
P ≤ e−2m2/

∑

i
D2

i

Optimal McDiarmid-type
inequality, P (AMcD)

UQ/Stats Compute tables for
statistics and plug them
into (theorem-derived)
estimators

Computation of Optimal
Statistical Estimators?
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Conclusions

By posing UQ as an optimization problem we
◮ place the available information (∼= constraints) about the input

uncertainties at the centre of the problem;
◮ obtain optimal bounds on output uncertainties w.r.t. that information;
◮ get natural notions of information content in optimization-theoretic

terms about constraints: active/inactive, binding/non-binding, . . .

We have theoretical (closed-form pen-and-paper) and real
(high-dimensional engineering systems) examples in hand showing
these phenomena at work.

Growing computational resources make large OUQ-type problems
increasingly tractable, cf. Bayesian methods in 20th Century.

Many open questions, especially concerning the inclusion of random
sample data, algorithmic properties of OUQ, &c.

Interesting times for UQ. The community is on the verge of
transforming UQ/statistical practice much as happened with PDEs
post-WWII.
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