Filtering

Andrew Stuart

21 October 2013

The Filtering Problem

Suppose that a system of interest evolves according to deterministic discrete time dynamics

$$v_{j+1} = \Psi(v_j) \tag{1}$$

where v_j in some Banach space \mathbb{V} denotes the state of the system at the j^{th} time step, and the initial condition is a Gaussian random variable $v_0 \sim \mathcal{N}(m_0, C_0)$. Suppose also that we have noisy observations in some other Banach space \mathbb{Y} (usually of much lower dimension than \mathbb{V}):

$$y_{j+1} = Hv_{j+1} + \eta_{j+1} \tag{2}$$

where $\eta_j \sim \mathcal{N}(0,\Gamma)$, and $H: \mathbb{V} \to \mathbb{Y}$ is some (linear) operator. Suppose that v_0 and all the η_j are pairwise independent, and let $Y_j := (y_\ell)_{\ell=0}^j$. The *filtering problem* is to determine the *filtering distribution* $\mathbb{P}(v_j|Y_j)$. This can be split into two steps, that of *prediction*

$$\mathbb{P}(v_j|Y_j) \mapsto \mathbb{P}(v_{j+1}|Y_j)$$

and analysis/correction

$$\mathbb{P}(v_{j+1}|Y_j) \mapsto \mathbb{P}(v_{j+1}|Y_{j+1}).$$

This is a Bayesian approach in which the prediction performs the role of the prior.

The Kálmán Filter

The Kálmán Filter (KF) is the case of linear dynamics, i.e. $\Psi(v) = Lv$ for some linear map $L \colon \mathbb{V} \to \mathbb{V}$. In this case, the filtering distribution is always Gaussian (since a linear image of a Gaussian measure is again Gaussian). If $\mathbb{P}(v_j|Y_j) = \mathcal{N}(m_j, C_j)$, then the prediction is that $\mathbb{P}(v_{j+1}|Y_j) = \mathcal{N}(\hat{m}_{j+1}, \hat{C}_{j+1})$ where

$$\hat{m}_{j+1} = Lm_j,$$
$$\hat{C}_{j+1} = LC_j L^\top.$$

For the analysis step, if we introduce a cost function

$$J(m) := \frac{1}{2} \left\| \hat{C}_{j+1}^{-1/2} \left(m - \hat{m}_{j+1} \right) \right\|^2 + \frac{1}{2} \left\| \Gamma^{-1/2} (y_{j+1} - Hm) \right\|^2$$

then the posterior mean and covariance are given by completing the square:

$$\begin{split} m_{j+1} &= \argmin_{m} J(m) \\ C_{j+1}^{-1} &= \hat{C}_{j+1}^{-1} + H^{\top} \Gamma^{-1} H. \end{split}$$

Gaussian Approximate Filters

When the forward dynamics Ψ are non-linear, the filtering distribution is at best *approximately* Gaussian. Inspired by the KF, we take

$$m_{j+1} = \underset{m}{\arg\min} J(m)$$
$$J(m) = \frac{1}{2} \left\| \hat{C}_{j+1}^{-1/2} (m - \Psi(m_j)) \right\|^2 + \frac{1}{2} \left\| \Gamma^{-1/2} (y_{j+1} - Hm) \right\|^2$$

Once the $\{\hat{C}_{j+1}\}_{j=0}^{\infty}$ are specified, this minimization determines a map $(m_j, y_{j+1}) \mapsto m_{j+1}$. We have the following equations for the evolution of the state v_j and the mean state estimate m_j :

$$C_{j+1}^{-1}m_{j+1} = \hat{C}_{j+1}^{-1}\Psi(m_j) + H^{\top}\Gamma^{-1}y_{j+1}$$
(3)

$$C_{j+1}^{-1}v_{j+1} = \hat{C}_{j+1}^{-1}\Psi(v_j) + H^{\top}\Gamma^{-1}H\Psi(v_j)$$
(4)

$$y_{j+1} = H\Psi(v_j) + \eta_{j+1}.$$
 (5)

Equations (3-5) imply that

$$C_{j+1}^{-1}(m_{j+1} - v_{j+1}) = \hat{C}_{j+1}^{-1}(\Psi(m_{j+1}) - \Psi(v_j)) + H^{\top}\Gamma^{-1}\eta_{j+1}.$$
(6)

Equation (6) underwrites the long-time asymptotic behaviour of the filter, and in particular the recovery from a (large) initial error. If we let $\delta_j := m_j - v_j$ denote the error, then δ_j evolves according to

$$\delta_{j+1} = C_{j+1}\hat{C}_{j+1}^{-1}(\Psi(v_j + \delta_j) - \Psi(v_j)) + \xi_{j+1}$$
(7)

$$\xi_{j+1} = C_{j+1} H^{\top} \Gamma^{-1} \eta_{j+1}.$$
(8)

In the good cases, the operator on the right-hand side of (7) will be a contraction overall, and so δ_j will shrink to 0 in long time.

3DVar

This is an approximate filter. The "3D" comes from physical application in which minimization (the **var**iational approach) is performed over the spatial dimensions at fixed time, as opposed to the 4DVar filter in which minimization is performed over time as well. In 3DVar, \hat{C}_j is a fixed matrix/operator \hat{C} , inspired by the fact that in the KF the covariance matrix C_j tends to a limit as $j \to \infty$. The use of a 'large' \hat{C} is referred to as 'variance inflation', and is used to compensate for model error (a wrong Ψ).

ExKF

The Extended Kálmán Filter uses $D\Psi$ as L, and $\hat{C}_{j+1} = D\Psi(v_j)C_j D\Psi(v_j)^{\top}$. This can be a prohibitively large matrix to calculate and store, e.g. in weather applications with $10^9 \times 10^9$ matrices.

EnKF

Ensemble Kálmán Filters use an ensemble $v^{(1)}, \ldots, v^{(K)}$ of state estimates with

$$\begin{aligned} v_{j+1}^{(k)} &= \operatorname*{arg\,min}_{m} J^{(k)}(m) \\ J^{(k)}(m) &= \frac{1}{2} \left\| \hat{C}_{j+1}^{-1/2} \left(m - \Psi(v_{j}^{(k)}) \right) \right\|^{2} + \frac{1}{2} \left\| \Gamma^{-1/2}(y_{j+1}^{(k)} - Hm) \right\|^{2}. \end{aligned}$$

The empirical covariance of $\{\Psi(v_j^{(k)})\}_{k=1}^K$ is used as \hat{C}_{j+1} . One implementation of the EnKF uses data perturbation, so that the k^{th} member of the ensemble uses the perturbed observation

$$y_{j+1}^{(k)} = y_{j+1} + \eta_j^{(k)}$$

where $\eta_i^{(k)} \sim \mathcal{N}(0, \Gamma)$ are independent and identically distributed for each $k = 1, \ldots, K$.