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Prototypical UQ Problem: Reliability Certification

g † : X → Y is a system of interest, with random inputs X distributed
according to a probability measure µ† on X.

For some subset F ⊆ Y , the event [g †(X ) ∈ F ] constitutes failure;
we want to know the probability of failure

P
µ†

[
g †(X ) ∈ F

]
≡ E

µ†

[
1
[
g †(X ) ∈ F

]]

︸ ︷︷ ︸

“just” an integral
to be evaluated
— directly?
— by MC?

— by quadrature?

,

or at least to know that it is acceptably small (or unacceptably large!).

Problem: In practical applications, one does not know the Universe’s
g † and µ† exactly!
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Other Quantities of Interest

For some quantity of interest (measurable function) q : X × Y → R,
we want to know

E
µ†

[
q(X , g †(X ))

]]

︸ ︷︷ ︸

“just” an integral
to be evaluated
— directly?
— by MC?

— by quadrature?

,

or at least to know that it is acceptably small (or unacceptably large!).

For example:
◮ failure probability: q(x , y) = 1[y ∈ F ],
◮ mean performance: q(x , y) = y ,
◮ variance about a nominal output value: q(x , y) = |y − y0|

2.

Our interest lies in understanding E
µ†

[
q(X , g †(X ))

]
when g † and µ†

are only imperfectly known (i.e. epistemic uncertainty), and to obtain
bounds that are optimal with respect to the known information.
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The Optimal UQ Framework General Idea

Optimal UQ

The initial step in the Optimal Uncertainty Quantification approach is
specifying a feasible set of admissible scenarios (g , µ) that could be
(g †, µ†) according to the available information:

A =






(g , µ)

∣
∣
∣
∣
∣
∣

(g , µ) is consistent with the current
information about (g †, µ†)

(e.g. legacy data, models, theory, expert judgement)






.

A priori, all we know about reality is that (g †, µ†) ∈ A; we have no
idea exactly which (g , µ) in A is actually (g †, µ†).

◮ No (g , µ) ∈ A is “more likely” or “less likely” to be (g †, µ†).
◮ Particularly in high-consequence settings, it makes sense to adopt a

posture of healthy conservatism and determine the best and worst
outcomes consistent with the information encoded in A.

Dialogue between UQ practitioners and the domain experts is
essential in formulating — and revising — A.
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The Optimal UQ Framework General Idea

Optimal UQ

A =

{

(g , µ)

∣
∣
∣
∣

(g , µ) is consistent with the current
information about (i.e. could be) (g †, µ†)

}

Optimal bounds (w.r.t. the information encoded in A) on the quantity
of interest E

µ† [q(X , g †(X ))] are found by minimizing/maximizing
Eµ[q(X , g(X ))] over all admissible scenarios (g , µ) ∈ A:

Q(A) ≤ E
µ† [q(X , g †(X ))] ≤ Q(A),

where Q(A) and Q(A) are defined by the optimization problems

Q(A) := inf
(g ,µ)∈A

Eµ[q(X , g(X ))],

Q(A) := sup
(g ,µ)∈A

Eµ[q(X , g(X ))].

Cf. generalized Chebyshev inequalities in decision analysis (Smith
(1995)), imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex*,
highly-constrained, global
optimization problems.

However, they can be reduced to
equivalent finite-dimensional
problems in which the
optimization is over the extremal
scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC
A

ex(A)

Figure : A linear functional on a
convex domain in R

n finds its
extreme value at the extremal
points of the domain; similarly,
OUQ problems reduce to
searches over finite-dimensional
families of extremal scenarios.

*But see e.g. Bertsimas & Popescu (2005) and Smith (1995) for convex special cases.
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Heuristic

Heuristic

If you have Nk pieces of information relevant to the random variable Xk ,
then just pretend that Xk takes at most Nk + 1 values in Xk .
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Heuristic

Heuristic

If you have Nk pieces of information relevant to the random variable Xk ,
then just pretend that Xk takes at most Nk + 1 values in Xk .

To make this heuristic rigorous, we restrict attention to Radon spaces,
“nice” spaces on which every Borel probability measure is inner
regular.
Our theorem builds on now-classical results by von Weizsäcker &
Winkler (1980) and Winkler (1988) characterizing the extremal
measures in moment classes, and “nice” linear/affine functionals on
such classes.
Important point: the extremal measures of a moment class

{
µ ∈ P(X)

∣
∣Eµ[ϕ1] ≤ 0, . . . ,Eµ[ϕn] ≤ n

}

are the discrete measures that have support on at most n + 1 distinct
points of X, which we denote by ∆n(X).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Theorem

Heuristic

If you have Nk pieces of information relevant to the random variable Xk ,
then just pretend that Xk takes at most Nk + 1 values in Xk .

Theorem (Generalized moment and indep. constraints)

Suppose that X := X1 × · · · ×XK is a product of Radon spaces. Let

A :=







(g , µ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g : X → R is measurable, µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk);
〈conditions on g alone〉; and, for each g,

for some measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R,

Eµ

[
ϕi

]
≤ 0 for i = 1, . . . , n0,

Eµk

[
ϕ
(k)
i

]
≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K







A∆ :=

{

(g , µ) ∈ A

∣
∣
∣
∣

µk ∈ ∆Nk
(Xk )

where Nk := n0 + nk

}

⊆ A.

Then Q(A) = Q(A∆) and Q(A) = Q(A∆).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Consequence

Heuristic

If you have Nk pieces of information relevant to the random variable Xk ,
then just pretend that Xk takes at most Nk + 1 values in Xk .

Computation of the OUQ bounds Q(A) and Q(A) is equivalent to
finite-dimensional problems in which the optimization variables are

◮ the positions of the support points x i ∈ X of the discrete measure µ;
◮ the weights wi ∈ [0, 1] of the points x i ; and
◮ the response values yi ∈ Y corresponding to g(x i).

with objective function

(N1,...,NK )∑

i=(0,...,0)

wi q(x i , yi )

and similar finite sums for the constraints.
=⇒ Implementation in the general-purpose open-source Mystic
optimization framework, written in Python.
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Example Applications Optimal Concentration Inequalities

Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Markov’s Inequality in OUQ Form

AM := {µ ∈ P([0,∞)) | Eµ[X ] ≤ m}

Suppose ‘failure’ is X ≥ t, for t ≥ m. Then

P(AM) = sup
µ∈AM

Pµ[X ≥ t]

= sup

{
1∑

i=0

wi1[xi ≥ t]

∣
∣
∣
∣
∣
wi , xi ≥ 0,

1∑

i=0

wi = 1,

1∑

i=0

wixi ≤ m

}

= 1−
m

t
.
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Example Applications Optimal Concentration Inequalities

Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Markov’s Inequality in OUQ Form

AM := {µ ∈ P([0,∞)) | Eµ[X ] ≤ m}

Suppose ‘failure’ is X ≥ t, for t ≥ m. Then

P(AM) = sup
µ∈AM

Pµ[X ≥ t] = 1−
m

t
.

How about other deviation/concentration-of-measure inequalities?

McDiarmid’s inequality: deviations from the mean of
bounded-differences functions of independent random variables.

Hoeffding’s inequality: deviations from the mean of sums of
independent random variables.
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Example Applications Optimal Concentration Inequalities

McDiarmid’s (a.k.a. Bounded Differences) Inequality

AMcD :=







(g , µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : X := X1 × · · · ×XK → R,

µ =
⊗K

k=1 µk , (i.e. X1, . . . , XK independent)
Eµ[g(X )] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}







,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{

|g(x) − g(x ′)|

∣
∣
∣
∣

x , x ′ ∈ X1 × · · · ×XK ,
xi = x ′i for i 6= k

}

.

Theorem (McDiarmid’s Inequality, 1988)

P(AMcD) := sup
(g ,µ)∈AMcD

Pµ[g(X ) ≤ 0]
!!!
≤ exp

(

−
2m2

∑K
k=1 D

2
k

)
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Example Applications Optimal Concentration Inequalities

Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid for K = 1, 2)

For K = 1,

P(AMcD) =







0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2,

P(AMcD) =







0, if D1 + D2 ≤ m,

(D1 + D2 −m)2

4D1D2
, if |D1 − D2| ≤ m ≤ D1 + D2,

1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 − D2|.

In the highlighted case, min{D1,D2} carries no information — not in the
sense of 0 bits, but the sense of being a non-binding constraint.
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Example Applications Optimal Concentration Inequalities

Optimal Hoeffding and the Effects of Nonlinearity

Similarly, one can consider AHfd “⊆”AMcD corresponding to the
assumptions of Hoeffding’s inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

AHfd :=







(g , µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : RK → R given by
g(x1, . . . , xK ) := x1 + · · ·+ xK ,

µ = µ1 ⊗ · · · ⊗ µK supported on a cuboid of
side lengths D1, . . . ,DK , and Eµ[g(X )] ≥ m ≥ 0







.

Hoeffding’s inequality is the bound

P(AHfd) := sup
(g ,µ)∈AHfd

Pµ[g(X ) ≤ 0] ≤ exp

(

−
2m2

∑K
k=1 D

2
k

)

.

Interestingly, P(AHfd) = P(AMcD) for K = 1 and K = 2, but
P(AHfd) ≤ P(AMcD) for K = 3, and the inequality can be strict.
Thus, sometimes linearity is binding information, sometimes not.
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Example Applications Legacy Data and No Model

OUQ with Legacy Data

An interesting class of admissible function-measure pairs arises in the
case of partially observed smooth enough functions, e.g.

A =






(g , µ)

∣
∣
∣
∣
∣
∣

g : X → Y has prescribed smoothness,
g = g † on O ⊆ X (i.e. some legacy data),
µ ∈ P(X), Eµ[ϕi ] ≤ 0 for i = 1, . . . , n







Note that O need not be statistically representative.

Simple examples of “smooth enough”: Lipschitz constants or Hölder
conditions.

Mathematically interesting interactions between the measure-theoretic
constraints and the metric geometry of the space X, e.g. the fact that
any parially-defined Lipschitz function can be extended to the whole
space without changing the Lipschitz constant (McShane (1934)).
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Example Applications Legacy Data and No Model

Example Reduction: 1 Random Variable, 1 Constraint

The original problem entails optimizing over an infinite-dimensional
collection of (g , µ) that could be (g †, µ†). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem equivalent 5-dimensional problem!

b

b

b

m

µ = a possible µ†

g = a possible g †

(g , µ) ∈ A

0

0.5

1.0

0 0.25 0.50 0.75 1.00

success ↑
failure ↓
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The original problem entails optimizing over an infinite-dimensional
collection of (g , µ) that could be (g †, µ†). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem equivalent 5-dimensional problem!

b

b

b

m

0

0.5

1.0

0 0.25 0.50 0.75 1.00

success ↑
failure ↓

g = a possible g †

bC bC

bC
bC

(g , µ) ∈ A

mass p
at x0

mass 1− p

at x1
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Example Applications Legacy Data and No Model

Example Reduction: 1 Random Variable, 1 Constraint

The original problem entails optimizing over an infinite-dimensional
collection of (g , µ) that could be (g †, µ†). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem equivalent 5-dimensional problem!

b

b

b

m

0

0.5

1.0

0 0.25 0.50 0.75 1.00

success ↑
failure ↓

bC bC

bC
bC

(x0, y0) (x1, y1)

mass p
at x0

mass 1− p

at x1

(g , µ) ∈ A

x0

x1

y0 = g(x0)
y1 = g(x1)
p = µ({x0})
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Example Applications Legacy Data and No Model

Explicit Solution: 1 Random Variable, 1 Data Point

The case of a single observation in 1d can be solved explicitly.
Suppose that you have one observation (z , g †(z)) ∈ [0, 12 ]×R of a
function g † : [0, 1] → R with Lipschitz constant L ≥ 0.
Explicit piecewise and discontinuous least upper bound on
P
µ† [g †(X ) ≤ 0] given L, (z , g †(z)), and that E

µ† [g †(X )] ≥ m:

Figure : Surface plot of the least upper bound P on Pµ† [g †(X ) ≤ 0], as a
function of the observed data point (z , g †(z)).
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Example Applications Legacy Data and No Model

Caltech’s Hypervelocity Impact Setup

Figure : Caltech’s Small Particle Hypervelocity Impact Range (SPHIR): a two-
stage light gas gun that launches 1–50mg projectiles at speeds of 2–10 km · s−1.
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Example Applications Legacy Data and No Model

3-Variable Hypervelocity Impact Example

Legacy data = 32 data points (steel-on-aluminium shots A48–A81,
less two mis-fires) from summer 2010 at Caltech’s SPHIR facility:

X = (h, α, v) ∈ X := [0.062, 0.125] in × [0, 30] deg × [2300, 3200]m/s.

Output g †(h, α, v) = the induced perforation area in mm2; the data
set contains results between 6.31mm2 and 15.36mm2.

Failure event is [g †(h, α, v) ≤ θ], for various values of θ.

Constrain the mean perf. area: E
µ† [g †(h, α, v)] ≥ m := 11.0mm2.

Modified Lipschitz constraint (multi-valued data):

L =

(
175.0

in
,
0.075

deg
,
0.1

m/s

)

mm2

|y − y ′| ≤
3∑

k=1

Lk |xk − x ′k |+ 1.0mm2.
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Example Applications Legacy Data and No Model

3-Parameter Hypervelocity Impact Example: Results

0

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

P

θ / mm2

[

0.0
0.715

]

bC

[

1.0
0.741

]

bC

[

2.0
0.762

]

bC

[

3.0
0.783

]

bC

[

4.0
0.805

]

bC

[

5.0
0.828

]

bC

[

6.0
0.852

]

bC

[

7.0
0.878

]

bC

[

8.0
0.906

]

bC

[

9.0
0.935

]

bC

[

10.0
0.967

]

bC

[

11.0
1.000

]

bC

[

12.0
1.000

]

bC

Figure : Maximum probability that perforation area is ≤ θ, for various θ, with the
data and assumptions of the previous slide, including mean perforation area
E[g †(h, α, v)] ≥ 11.0mm2. For θ ≥ 2mm2, the results are within 10−6 of
Markov’s bound, which indicates that 2 binding data points are those that
constrain the maximum of the response function; the other 30 are non-binding.
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Example Applications Legacy Data and a Model

Models and Neighbourhoods

One can consider feasible sets in which the constraints on g are of the
form d(g ,F ) ≤ C for some model function F .
There are good and bad choices for the distance function d :

Ffeasible

infeasible

bC
bC

Y

X

Figure : Assuming that reality g † is uniformly close to the model F means
assuming that the model has approximately the right cliffs in exactly the right
places; Hausdorff (graphical) closeness is a much looser assumption.
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Example Applications Legacy Data and a Model

Hypervelocity Impact Application

System is characterized by three input parameters: target plate
thickness h, obliquity α, and impact velocity v , with assumed ranges
h ∈ Xh := {0.5, 1.5, 3.0}mm, α ∈ Xα := [0, 60]◦, and
v ∈ Xv := [4.5, 7.0] km · s−1. Input space is X := Xh ×Xα ×Xv .

Perforation area is the main performance measure of the system,
which is expected to lie in the output space Y := [0, 39.73]mm2. We
want to bound P[g †(h, α, v) ≤ θ] for threshold area values θ.

The model function F is the Optimal Transportation Meshfree
method. (A lot swept under the carpet here!)

Model-reality mismatch quantified as d(g †,F ) ≤ δ. In practice, we fix
a confidence level 0 < η < 1, and use legacy data points to find δ(η)
such that d(g †,F ) ≤ δ(η) with probability ≥ η.
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Example Applications Legacy Data and a Model

Mean Constraints on Outputs

Figure : OUQ least upper bounds on perforation area probabilities given
d(g †,F ) ≤ δ and bounds on Eµ[g

†]. Note the relative insensitivity (for
θ ≥ 2mm2) to both δ and the choice of d as the uniform or Hausdorff distance.
Note also that the closeness to the Markov bounds (solid curves), indicating that
the binding information is the implied maximum perforation area.
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Example Applications Legacy Data and a Model

Mean Constraints on Inputs

Figure : OUQ least upper bounds on perforation area probabilities given
d(g †,F ) ≤ δ and bounds on Eµ[h], Eµ[α], Eµ[v ]. Note the strong sensitivity to
both δ and the choice of d as the uniform (solid curves) or Hausdorff (dashed
curves) distance.
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Seismic Safety Certification

Consider the survivability of a truss structure
under an random earthquake of known
intensity drawn from an incompletely
specified probability distribution.

Consider a random ground motion u, with the
constraint that the mean power spectrum is
the Matsuda–Asano shape function sMA:

Eu∼µ

[
|û(ω)|2

]
= sMA(ω) ∝

ω2
gω

2eML

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.

Such shape functions are a common tool in
the seismological community, but usually u is
generated by filtering white noise through s.

We used 200 3d Fourier modes, leading to a
1200-dimensional OUQ problem.

Sullivan (Warwick/Caltech) Optimal UQ for Hypervelocity Impact Stanford, 1–3 Jun. 2013 33 / 39



Example Applications Seismic Safety Certification

Reduction of the Random Power Spectrum

ω

|û(ω)|2

sMA(ω) = Eu∼µ

[
|û(ω)|2

]

Figure : One mean constraint on each independent random Fourier mode û(ω)
(i.e. that Eu∼µ

[
|û(ω)|2

]
= sMA(ω)) =⇒ we get to pretend that u(ω) takes at

most two distinct values which together satisfy this mean constraint.
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Numerical Vulnerability Curves (CDF Envelopes)

min and max
probability
of failure
over AMA

Richter magnitude, ML
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Figure : The minimum and maximum probability of failure as a function of
Richter magnitude, ML, where the ground motion u is constrained to have
Eµ[|û|

2] = the Matsuda–Asano shape function sMA with natural frequency ωg and
natural damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data
point required ≈ 1 day on 44+44 AMD Opterons (shc and foxtrot at Caltech).
The forward model used 200 Fourier modes for a 3-dimensional ground motion u.
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When and How to Use OUQ

Use OUQ if you are strongly risk-averse, have unavoidable epistemic
uncertainties, and have enough time to compute your way through
the problem.

Conversely, for real-time applications with simple and well-understood
uncertainties, OUQ is impractical and overkill.

Good features to include in your optimizer:
◮ keep the functional parts of your optimizer as swappable modules, and

pay attention to enforcing constraints;
◮ cache past function evaluations;
◮ look out for convex sub-problems in the non-convex OUQ problem;
◮ look out for numerical ‘collapse’ of the discrete measure (dimension

reduction =⇒ huge cost savings).

Personal rules of thumb: Differential Evolution works well with pop.
size ≈ 40, 200 to 400 generations convergence criterion, run problems
with 10s of support points and a fast model on a laptop overnight.
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Conclusions

By posing UQ as an optimization problem we
◮ place the available information (∼= constraints) about the input

uncertainties at the centre of the problem;
◮ obtain optimal bounds on output uncertainties w.r.t. that information;
◮ get natural notions of information content in optimization-theoretic

terms about constraints: active/inactive, binding/non-binding, . . .

We have theoretical (closed-form pen-and-paper) and real
(high-dimensional engineering systems) examples in hand showing
these phenomena at work.

Growing computational resources make large OUQ-type problems
increasingly tractable, cf. Bayesian methods in 20th Century.

Many research questions, especially concerning the inclusion of
random sample data, algorithmic properties of OUQ, &c.
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