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Abstract

Notes for a 90-minute presentation on gradient-based Monte Carlo sampling methods
for the Uncertainty Quantification seminar at Freie Universität Berlin, held on Tuesday, the
31st of May, 2016. Mostly based on resources from Wikipedia and papers by Girolami and
Calderhead [2] and Neal [3].

1 Introduction

Let (Θ,A, π) be probability space, and in this talk, we will have Θ := RD. We will
assume throughout that π > 0. We are in the situation that π is analytically intractable
and we can only evaluate π(θ) for any θ ∈ Θ. Therefore, we want a finite sequence of
independent samples (θ1, . . . , θN ) ∈ ΘN distributed according to π, which can be used to
approximate the distribution (e.g. to generate a histogram or to approximate expectations
of the form Eπ[X] ≈ 1

N

∑N
i=1 X(θi) where X ∼ π).

1.1 Rejection sampling

It may be natural to generate independent samples (θ, ξ) ∈ Θ× [0, 1] uniformly and keep
only those, for which ξ ≤ π(θ). The projections θ are then distributed according to π – an
analogy is the throwing darts uniformly onto a dart board and take of (reject) the darts,
that did not hit the board. The remaining darts will be distributed uniformly within the
board.

The problem is that the probability of ξ ≤ π(θ) decreases exponentially with n. It is
therefore a good idea to not just throw in random guesses, but to stay in about the same
region, if “got under” the distribution, i.e. to walk around according to a Markov chain,
that has the stationary distribution π. If we then walk a big enough number of steps along
this Markov chain, we will have one sample from π.

1.2 Metropolis-Hastings-Algorithm

The most basic idea to do this goes as follows: Define some proposal density function
ω(θ∗|θ) we can sample from, e.g. ω(θ∗|θ) = N (θ∗|θ,Λ) (i.e. a random walk) and some
initial configuration θ0. For one Metropolis-Hastings step, proceed according to the following
algorithm:
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Draw new proposal state θ∗ according to ω(θ∗|θk)

Calculate the acceptance probability α = min{1, π(θ∗)ω(θk|θ∗)

π(θk)ω(θ∗|θk)
}

Sample u ∈ [0, 1] uniformly
if u ≤ α then

θk+1 := θ∗ (accept)
else

θk+1 := θk (reject)
end

1.3 Detailed Balance

One can easily verify, that the Markov chain constructed by this algorithm is reversible
with respect to π, i.e. π satisfies detailed balance. What we want want to show is that
π(θ)π(θ∗|θ) = π(θ∗)π(θ|θ∗) (where π(θ∗|θ) is the transition probability we control), i.e. we
have a symmetry in θ and θ∗. We can calculate this as follows:

π(θ)π(θ∗|θ) = π(θ)ω(θ∗|θ) min

{
1,
π(θ∗)ω(θ|θ∗)
π(θ)ω(θ∗|θ)

}
= min{π(θ)π(θ∗|θ), π(θ∗)π(θ|θ∗)}

since all probabilities are greater or equal to zero and we have the desired symmetry.
Now of course, detailed balance implies, that the Markov chain has the unique equlilib-

rium distribution π:∫
π(θ)π(θ∗|θ)dθ DB

=

∫
π(θ∗)π(θ|θ∗)dθ = π(θ∗)

∫
π(θ|θ∗)dθ = π(θ∗).

Furthermore, our Markov chain is obviously aperiodic and irreducible and therefore ergocic
– hence, if we do T such steps for T large, we will get one sample from approximately π.

However, there are several disadvantages of this method:

• Although convergence to π is guaranteed, the initial samples may follow a very different
distribution, especially if θ0 lies in a region of low density. As a consequence, typically
one has to throw an initial number of samples away (burn-in period).

• θk and θk+1 are correlated. Although we still have 1
n

∑n
i=1 f(Xi)

a.s.→ E[f(X)] for
X ∼ π and some quantity of interest f , if we want independent samples, we need to
throw away the results of T − 1 intermediate steps between samples for T large.

Especially the last downside is a problem of the Metropolis-Hastings algorithm: If we want
to get low autocorrelation times, we need to make big steps (i.e. choose a large variance
for ω). But since we perform a random walk on the probability space Θ, we will get low
acceptance probabilities and explore the space very slowly.

2 Metropolis-adjusted Langevin algorithm (MALA)

2.1 Langevin Dynamics

The idea of MALA is to exploit a somewhat “smooth” structure of π: If we have accepted
a step, it might be a good idea to keep on walking into that direction, assuming that we get
into regions of even higher probabilities.

Since we are viewing the Markov chain as “moving” through Θ and now want to do
that in a more elaborate way, it makes sense to define these dynamics in terms of some
dynamics. MALA is based on a Langevin diffusion, defined by the stochastic differential
equation (SDE)

dθ(t) =
1

2
∇θL(θ(t))dt+ db(t) (1)
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where L(θ) ≡ log π(θ) and b denotes a D-dimensional Brownian motion.

2.2 Discretization

A first-order Euler discretization of the SDE gives the proposal mechanism

θ∗ = θk +
1

2
ε∇θL(θk) +

√
εzk (2)

where z ∼ N (z|0, I) and ε is the integration step size. Since we introduce a first-order inte-
gration error with this, we need to perform a Metropolis accept-reject step, since otherwise
convergence to π is not guaranteed. The acceptance probability takes the standard form

α = min

{
1,
π(θ∗)ω(θk|θ∗)
π(θk)ω(θ∗|θk)

}
(3)

2.3 Optimal Scaling for D → ∞
In practice, as with MH, we need to decide which stepsize ε, i.e. which “scaling” to use:

if the step size, is too large, we will have low acceptance probability, because we will most
likely end in a region of much smaller probability, but if it is too small, then we will explore
the sample space Θ very slowly and have to throw away most of the samples because of
high correlations. As the dimension D increases, one would intuitively guess that ε should
decrease, as D increases, which is the case. In fact, it needs to be chosen proportionally to

D−
1
3 and one can derive an asymptotic average acceptance rate of 0.574. The exact result

can be found in Roberts and Rosenthal [5].
This yields some practical guidance, how to choose ε in medium to high dimensions D:

One should tune the proposal variance, so that the average acceptance rate is about 0.574.
So even in these very simple spaces, MALA scales better than Metropolis-Hastings. We

can expect even greater differences in mixing behaviors, when our space is more complicated,
e.g. we have strongly correlated variables.

2.4 Benefits and Downsides

Since now a drift term drift term in the proposal mechanism based on the gradient
information is introduced, if we have some smoothness condition fulfilled for our target
density π, we will much more likely get proposals in directions of higher probabilities, and
therefore higher acceptance probabilities.

We will also see, that MALA scales much better than MH: Asymptotically, MH has
an optimal acceptance rate of 0.234. We will derive this below, and more formally this is
obtained by Roberts et al. [4].

Nevertheless, it is clear that the isotropic diffusion will be inefficient for strongly cor-
related variables with widely differing variances forcing the step size ε to accomodate the
variate with smallest variance. This issue can be circumvented by using a preconditioning
matrix M ∈ RD×D, such that

θ∗ = θk +
1

2
εM∇θL(θk) +

√
εMzk. (4)

One can obtain
√
M by diagonalization of M or Cholesky decomposition.

The problem is, that there is no systematic way or guideline, how to choose that matrix
in a principled manner – indeed, it might be even inappropriate for the starting phase of
the Markov chain (see [1]).
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3 Hamiltonian Monte Carlo (HMC)

Hamiltonian dynamics has a physical interpretation that can provide useful intuitions.
In two dimensions, we can visualize the dynamics as that of a frictionless ball that rolls
over a surface of varying height. The state of this system consists of the position of the
ball, given by a two-dimensional vector q, and the momentum of the ball (its mass times
its velocity), given by a two-dimensional vector p. The potential energy, U(q), of the ball
is proportional to the height of the surface at its current position, and its kinetic energy,

K(p), is equal to |p|2
2m

, where m is the mass of the ball. On a level part of the surface,
the ball moves at a constant velocity, equal to p

m
. If it encounters a rising slope, the

ball’s momentum allows it to continue, with its kinetic energy decreasing and its potential
energy increasing, until the kinetic energy (and hence p) is zero, at which point it will roll
back down (with kinetic energy increasing and potential energy decreasing). In nonphysical
MCMC applications of Hamiltonian dynamics, the position will correspond to the variables
of interest. The potential energy will be minus the log of the probability density for these
variables. Momentum variables, one for each position variable, will be introduced artificially.

3.1 Hamilton Dynamics

Hamiltonian dynamics operates on aD-dimensional position vector, q,and aD-dimensional
momentum vector, p, so that the full state space has 2D dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

The partial derivatives of the Hamiltonian determine how q and p change over time, t,
according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
, (5)

dpi
dt

= −∂H
∂qi

, (6)

for i = 1, . . . , D.
For HMC, we want to use a Hamiltonian function, that can be written as

H(q, p) = U(q) +K(p) (7)

where U(q) is called the potential energy, defined as

U(q) := − log π(q)

where π is the distribution we want to sample from (plus a convenient constant) and K(p)
is called the kinetic energy, usually defined as

K(p) :=
1

2
pTM−1p

Therefore, we can write (5) as
dqi
dt

= [M−1p]i,

dpi
dt

= −∂U
∂qi

.

In practical applications, one typically chooses M = diag(m1, . . . ,mD).
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3.2 Discretization

The most frequent used method of discretizing this dynamics for calculations (which is
hard to beat in practice) works as follows:

pi
(
t+

ε

2

)
= pi(t)−

ε

2

∂U

∂qi
(q(t))

qi(t+ ε) = qi(t) + ε
pi
(
t+ ε

2

)
mi

pi (t+ ε) = pi
(
t+

ε

2

)
− ε

2

∂U

∂qi
(q(t+ ε))

If we want to go to t + 2ε, we do not have to apply this whole update scheme twice, but
instead we can combine the last half step of the first update with the first half step of the
second update. The method then looks very similar to an Euler approximation, except that
the momentum variables computed are shifted by ε

2
, which makes this method second order:

Its local error is of order ε3 and the global error of order ε2. The Euler instead would have
order ε2 error and order ε error.

3.3 Properties

Several properties of Hamiltonian dynamics are crucial to its use in constructing MCMC
updates.

3.3.1 Time Reversibility

First, Hamiltonian dynamics is reversible: The mapping Ts from the state at time
t,(q(t), p(t)), to the state at time t + s, (q(t + s), p(t + s)), is one-to-one, and hence has
an inverse, Ts. This inverse mapping is obtained by simply negating the time derivatives in
equations (5) and (6).

This reversibility is important for showing that MCMC updates that use the dynamics
leave the desired distribution π invariant, since this is most easily proved by showing re-
versibility of the Markov chain transitions, which requires reversibility of the dynamics used
to propose a state.

3.3.2 Conservation of Hamiltonian

A second property of the dynamics is that the Hamiltonian stays invariant. This is easily
seen by looking at the time derivative of H:

dH

dt
=

D∑
i=1

dqi
dt

∂H

∂qi
+
dpi
dt

∂H

∂pi

=

D∑
i=1

∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

= 0.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form
part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can only make H approximately invariant, and hence
we will not quite be able to achieve this.

5



3.3.3 Volume Preservation

A third fundamental property of Hamiltonian dynamics is that it preserves volume in
(q, p) space: If we apply the mapping Ts to the points in some region R of (q, p) space, with
volume V , the image of R under Ts will also have volume V . This can be proved in several
ways, one is to note that the divergence if the vector field defined by (5) and (6) is zero:

D∑
i=1

∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

=

D∑
i=1

∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

=

D∑
i=1

∂H2

∂pi∂qi
− ∂2H

∂pi∂qi

= 0.

As the divergence is the rate of change in volume, a vector field has zero divergence exactly
when the flow is volume preserving.

3.4 MCMC using Hamiltonian Dynamics

Using Hamiltonian dynamics to sample from a distribution requires translating the den-
sity function for this distribution to a potential energy function and introducing “momen-
tum” variables to go with the original variables of interest (now seen as “position” variables).
We can then simulate a Markov chain in which each iteration resamples the momentum and
then does a Metropolis update with a proposal found using Hamiltonian dynamics.

3.4.1 Canonical Distribution

The distribution we wish to sample from can be related to a potential energy function
via the canonical distribution from statistical mechanics, which is

P (x) =
1

Z
exp

(
−E(x)

T

)
where in our case, E(x) = H(q, p) and we choose T = 1. If H(q, p) = U(q) +K(p), the joint
density is

P (q, p) =
1

Z
exp (−U(q)) exp (−K(p)) (8)

and we see that q and p are independent, and each have canonical distributions. We will use
q to represent the variables of interest and introduce p just artificially to let the Hamiltonian
dynamics operate.

3.4.2 The HMC Algorithm

Now that we know Hamilton Dynamics, we can present the Hamiltonian Monte Carlo
Algorithm.

Draw new proposal state pi ∼ N (0,mi)
Simulate Hamiltonian Dynamics for L leapfrog steps, negate p, which yields (q∗, p∗)
Calculate the acceptance probability α = min{1, exp(−H(q∗, p∗) +H(q, p)}
Sample u ∈ [0, 1] uniformly
if u ≤ α then

(q, p)k+1 := (q∗, p∗) (accept)
else

(q, p)k+1 := (q, p)k (reject)
end

6



3.5 Detailed Balance

Since the proposal distribution ω is analytically not as easily accessible as in the MALA
or MH-Algorithm, we have to check that the acceptance probability is chosen right to satisfy
detailed balance, or in other words, the joint density H(q, p) (and therefore the marginal
density of q) is left invariant.

Let us therefore partition the (q, p)-space into regions Al, each with small volume V .
Let the image of Al under L leapfrog steps and negation of p be Bl. Due to reversibility of
the leapfrog steps and negation, the Bl will also partition the space and because of volume
preservation of the leapfrog steps, each Bl also has volume V . Detailed balance holds, if
∀i, j

p(Ai)ρ(Bj |Ai) = p(Bj)ρ(Ai|Bj), (9)

where p is the probability under the canonical distribution and ρ(X|Y ) = (α ◦ ω)(X|Y ) is
the conditional probability of proposing and accepting a move to region X when being in
state Y (where the proposal probability equals to 1, since we are calculating the Hamilton
dynamics deterministically). Clearly, when i 6= j, ρ(Bj |Ai) = ρ(Ai|Bj) = 0 and equation (9)
is satisfied. Otherwise, since H is continuous almost everywhere, in the limit as the regions
Al and Bl become smaller, H becomes effectively constant within each region, with value
HX in region X, and hence the canonical probability density and the transition probabilities
become effectively constant within each region as well. We can now (for infinitesimal Al, Bl)
rewrite the left side of (9) for i = j (say, both equal to l) as

V

Z
exp(−HAl) min{1, exp(−HBl +HAl)} =

V

Z
min{exp(−HAl), exp(−HBl)}

=
V

Z
exp(−HBl) min{exp(−HAl +HBl), 1},

which is precisely equation (9).
We also see now, how the volume preservation property is coming in handy here: Oth-

erwise, the acceptance probability would need to be dependent on these volume changes,
since we would not have p(X) = V

Z
exp(−HX) and p(Y ) = V

Z
exp(−HY ) for the same V .

3.6 Optimal Scaling for D → ∞
3.6.1 Choosing the Stepsize

Now, let us not state a theorem, but derive some practical guidance for scaling HMC
right in comparison to MH at least briefly and informally in the asymptotics for the special
case as in MALA, so we are now assuming U(q) =

∑
ui(qi) for our potential energy function,

where the functions ui are drawn independently from some distribution, that is the ui are
iid. Let us write ∆1 for the energy difference E(x∗)−E(x) of a single variable (x = (qi, pi)

and E(x) = ui(qi) +
p2i
2

) or ∆D for E(x∗) − E(x) for the whole system (x = (q, p) and
E(x) = U(q) +K(p)).

Let us first note, that because of volume preservation, we have dqdp = dq∗dp∗ for in-
finitesimal volume elements and we can derive

1 =
1

Z

∫
exp(−E(q∗, p∗)) dq∗dq∗

=
1

Z

∫
exp(−(E(q∗, p∗)− E(q, p))) exp(−E(q, p)) dqdp

= E(q,p)∼H [exp(−(E(q∗, p∗)− E(q, p)))]

= Ex∼H [exp(−∆)].
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Form Jensen’s inequality, we get

1 = E[exp(−∆)] ≥ exp(E[−∆])

⇔ E[∆] ≥ 0.

Now as D →∞, as each ∆1 has positive mean and ∆D is the sum of ∆1 for each variable,
∆D → ∞ if we fix the stepsize ε for HMC resp. the standard deviation ζ of the proposal
distribution for MH. Therefore, the acceptance probability min{1, exp(−∆D))} decreases.
The only hope is that, if we do not decrease the stepsize by to much, we have a large
enough variance of ∆, so that would have sufficiently many proposals with negative energy
difference, which are accepted automatically. But this hope is destroyed right away: As
D →∞ and ζ, ε→ 0, ∆→ 0 as well. Using a second-order approximation of exp(−∆1) as

1−∆− 1 +
∆2

1
2

, we find

1 = E[exp(−∆1)] ≈ E[1−∆− 1 +
∆2

1

2
]

⇔ E[∆1] ≈ 1

2
E[∆2

1]

so that, for small ∆1 and E[∆1]2 ≈ 0, by summing over all variables, we get

2E[∆D] ≈ Var[∆D]. (10)

Therefore, to have enough accepted proposals, we must keep the mean of ∆D near 1.
We can now see, how we need to scale ζ by directly averaging ∆1 for a symmetric

proposal. Suppose the proposal for one variable x∗ = x + c for c = a and c = −a equally
likely. Then we might approximate U(x∗) to second order as

U(x∗) ≈ U(x) + cU ′(x) +
c2U ′′(x)

2

and we find

Ec∈{a,−a}[∆1] = Ec∈{a,−a}[U(x∗)− U(x)]

≈ Ec∈{a,−a}[cU ′(x) +
c2U ′′(x)

2
]

=
a2

2
U ′′(x).

Averaging over a, we see that

Ea[∆1] = Ea[
a2

2
U ′′(x)]

=
U ′′(x)

2
Ea[a2]

=
U ′′(x)

2
Var[a2]

∼ ζ2

so that
E[∆D] ∼ Dζ2. (11)

Therefore, to maintain a reasonable acceptance rate, we must choose ζ ∼ D−
1
2 . Since the

number of iterations needed to reach a nearly independent point is proportional to ζ−2 ∼ D
(from the definition of the autocorrelation function), we have a computation time = O(D2).
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Turning to HMC, we saw that the error in H when using the leapfrog method to simulate
a trajectory of a fixed length is proportional to ε2. The error in H for a single pair (qi, pi)
is ∆1, so ∆2

1 ∼ ε4. Therefore,
E[∆D] ∼ Dε4 (12)

so that we need to choose ε ∼ D−
1
4 . The number of leapfrog updates to reach a nearly

independent point scales as ε−1 ∼ D
1
4 and we have a computation time = O(D

5
4 ).

3.6.2 Optimal Acceptance Rates

Knowing how to choose ε and ζ in the asymptotics, we can determine the average ac-
ceptance rate, if that optimal choice is used. This is helpful when tuning the algorithm
(see below) – provided, of course, that the distribution sampled is high-dimensional and has
properties that are adequately modeled by a distribution with replicated variables.

To find this acceptance rate, we remind ourselves that we have detailed balance (which
uses, that we have reached equilibrium – for the first (transient) phase, our results will not
apply, see [1]). Therefore, the probability of making an accepted move with ∆D negative is
the same as making an accepted move with ∆D positive. Since moves with negative ∆D are
always accepted, we observe that simply P (accept) = 2P (∆D ≤ 0).

For largeD, we have that ∆D =
∑

∆1 is Gaussian because of the Central Limit Theorem,
so P (∆D ≤ 0) is essentially the CDF of a Gaussian, evaluated at zero. We know from (10)
that the variance of ∆D is twice its mean E[∆D] = µ, so

P (accept) = 2P (∆D ≤ 0) = 2Φ

(
0− µ√

2µ

)
= 2Φ

(
−
√
µ

2

)
= a(µ) (13)

where Φ(z) is the CDF of a standard Gaussian.
For random-walk Metropolis, we have a computation time proportional to 1

aζ2
where

a is the acceptance rate. As µ = E[∆D] ∼ ζ2, we have a computation cost CMH with a
proportionality of

CMH ∼
1

a(µ)µ
. (14)

Numerical calculation shows that this is minimized when µ = 2.8 and a(µ) = 0.23. There-
fore, in high dimensions, it is best to tune MH such that about every fourth move is accepted.

Looking at HMC, the cost of obtaining an independent point will be proportional to 1
aε

,
and as we saw above that µ is proportional to ε4. From this we obtain

CHMC ∼
1

a(µ)µ
1
4

. (15)

Numerical calculation shows that this is minimized when µ = 0.41 and a(µ) = 0.65.

3.7 Benefits and Downsides

Since we are doing L (deterministic) leapfrog steps, we are avoiding an inefficient explo-
ration of the sample space, which one has with random walks: Note that the variance of
the position after n steps in MH grows proportionally to n (until the amount of movement
becomes comparable to the size of the sample space Θ), since the position is the sum of
mostly independent movements for each iteration. The standard deviation, which gives the
typical amount of movement, is therefore proportional to

√
n.

The stepsize of HMC is similarly limited by the most constrained direction, but the
movement will be in the same direction for many steps. The distance moved after n steps
will therefore tend to be proportional to n, until the distance moved becomes comparable to
the overall width of the distribution. The advantage compared to movement by a random
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walk will be a factor roughly equal to the ratio of the standard deviations in the least
confined direction and most confined direction.

Furthermore, similar to MALA, HMC has a much better scaling when going up in di-
mensions.

Unfortunately, although we know somewhat how to tune ε using some pilot runs and
looking at the acceptance rate, there is again no way for choosing the mass matrix M in a
principled manner. One typically takes diagonal matrices with entries mi, but even choosing
these is sort of a “black magic”. In practice, this problem is often handled by using some
pilot runs and trace plots, or looking at the autocorrelation function.
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