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Abstract. Notes for a 90-minute presentation on the Ensemble Kalman Filter for the Uncertainty

Quantification seminar at Freie Universität Berlin, held on Tuesday, the 8th of June, 2016. Based on
the eponymous article (http://arxiv.org/abs/1602.02020) by Schillings and Stuart.

Ensemble Kalman Filter (EnKF): methodology for

• state estimation in partial, noisily observed dynamical systems
• parameter estimation in inverse problems

EnKF is:

• not well understood; theory often deals with large ensemble limit
• robust, considered effective in situations far from large ensemble limit

More precisely: EnKF is a Monte Carlo approximation of linear Kalman filter, in which ensemble
of E ∈ N state estimates is used to estimate the covariance operator (computational savings can be
important in high-dimensional scenarios) (see [2, Section 7.4]).

1. Introduction

Summary

• Derive continuous-time limit of EnKF for inverse problems
• Analyse long-time behaviour of resulting dynamical system
• For linear inverse problems, continuous-time limit corresponds to gradient flows for data misfit

in each ensemble member; empirical covariance matrix of ensemble serves as pre-conditioner

Let G : X → Y be a map between separable Hilbert spaces.
Inverse problem (IP):recover unknown u from observation y, where

(0a) y = G(u) + η,

where

• η - observational noise,
• G - compact operator
• inversion is ill-posed on Y.

Assume Y = RK for K ∈ N (finite-dimensional setting).
In such inverse problems, least squares functional (“model-data misfit”)

(0b) Φ(u; y) =
1

2

∥∥∥Γ−1/2(y − G(u))
∥∥∥2

Y

where the covariance operator Γ : Y → Y satisfies Γ > 0.
If inverse problem ill-posed, need to regularise the problem of minimising the model-data misfit Φ.

One approach is Bayesian regularisation: if (u, y) as a joint random variable in X × Y, η ∼ N(0,Γ)
independent of u ∼ µ0, then solution of IP given by X -valued RV u|y, where

(1) u|y ∼ µ(du) =
1

Z
exp (−Φ(u; y))µ0(du)

for Z normalisation constant. µ - “posterior”, µ0 - “prior”, Z−1 exp (−Φ(u; y)) - “likelihood of u given
observation y”

Here: view EnKF as derivative-free optimisation technique, with ensemble used as proxy for derivative
information (i.e. EnKF regularises the problem of minimising least-squares data misfit functional Φ).

Goal: understand in what sense that the continuous-time limit of EnKF corresponds to set of precon-
ditioned gradient flows for data misfit in each ensemble member.

EnKF algorithm nonlinear even for linear inverse problems, because empirical covariance matrix of
ensemble couples ensemble members together.
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2. EnKF for Inverse Problems

Main point: Iterative EnKF as approximation of Sequential Monte Carlo (SMC) method for IPs. Let

• N ∈ N denote final discrete time,
• h = N−1 denote time step,
• 1 ≤ n ≤ N denote discrete time.

For posterior distribution µ in (1), define probability measure at time n by

µn(du) ∝ exp (−nhΦ(u; y))µ0(du),

so terminal measure µN = µ equals desired posterior. Then

(2) µn+1(du) =
1

Zn
exp (−hΦ(u; y))µn(du),

for normalisation constant

Zn =

∫
exp (−hΦ(u))µn(du).

Let L be the nonlinear operator corresponding to Bayes’ theorem that satisfies

(3) µn+1 = Lnµn.

2.1. Sequential Monte Carlo. Idea: approximate µn by weighted sum of Dirac masses. Fix ensemble

of J particles (u
(j)
n )Jj=1 ∈ X and corresponding weights (w

(j)
n )Jj=1 (nonnegative, sum to one)

(3a) µn ≈
J∑

j=1

w(j)
n δ

u
(j)
n

All SMC methods consist of a way to evolve the particles and weights at time n forward in time. SMC
used for Bayesian inverse problems; convergence proven for J →∞.

SMC can perform poorly when weights degenerate (one weight ≈ 1 and all others ≈ 0). EnKF tries

to prevent degeneracy of weights by setting w
(j)
n = J−1 for all 1 ≤ n ≤ N , i.e. by equally weighting all

the particles. This way, we only need to evolve the particles forward in time, since weights remain the

same. Let un = (u
(j)
n )Jj=1.

Notation: for u = (u(j))Jj=1 ∈ X J be arbitrary, define sample means

(3a) u =
1

J

J∑
j=1

u(j), G =
1

J

J∑
j=1

G(u(j)).

Return to SMC: how to evolve particles forward in time. Under substitution Γ 7→ h−1Γ in (0b), the
mapping takes the form of the “update step”

(4) u
(j)
n+1 = u(j)

n + Cup(un)
(
Cpp(un) + h−1Γ

)−1
(
y

(j)
n+1 − G(u(j)

n )
)
, j = 1, . . . , J.

where perturbed observation y
(j)
n+1 satisfies

(4a) y
(j)
n+1 = y + ξ

(j)
n+1.

where

(4b) ξ
(j)
n+1 ∼ N(0, h−1Σ)

for Σ ∈ {0,Γ}.
Define operator (empirical covariance matrix for fluctuation of G(u) about its mean)

(5) Cpp(u) =
1

J

J∑
j=1

(
G(u(j) − G

)
⊗
(
G(u(j))− G

)
and empirical covariance matrix of fluctuation of u about its mean with fluctuation of G(u) about its
mean

(6) Cup(u) =
1

J

J∑
j=1

(
u(j) − u

)
⊗
(
G(u(j))− G

)
.

Main message: formulation of EnKF as SMC algorithm with equal weights and particles evolving
according to (4), (5), (6).

Invariant subspace property of EnKF:
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Lemma 2.1. If S = span
{
u

(j)
0 , j = 1, . . . , J

}
, then u

(j)
n ∈ S for all (n, j) ∈ N× {1, . . . , J}.

3. Continuous time limit

Limit: send parameter h appearing in (2) to zero.

3.1. Nonlinear problem. Assume: un ≈ u(nh) in (4) in the limit h→ 0. Then update step (4) can be
written as time-stepping scheme

u
(j)
n+1 = u(j)

n +hCup(un) (hCpp(un) + Γ)
−1

(y − G(u(j)
n ) + ξ

(j)
n+1)

= u(j)
n +hCup(un) (hCpp(un) + Γ)

−1
(y − G(u(j)

n ) + h−1/2Σ1/2ζ
(j)
n+1)︸ ︷︷ ︸

=:arg

using (4a) and (4) in the first equation, and using (4b) in the second equation with ζ
(j)
n+1 ∼ N(0, I).

Assuming that the operator Ah(un) := Cup(un) (hCpp(un) + Γ)
−1

acts linearly on arg, rearranging the
last equation yields

u
(j)
n+1 = u(j)

n + hAh(y − G(u(j)
n )) +Ah

(
h1/2Σ1/2

)
ζ

(j)
n+1.

Since Ah(un) → Cup(un)Γ−1 as h → 0, the limiting equation as h → 0 (if it exists) is the system of
coupled Ito SDEs

(7) du
(j)
t = Cup(ut)Γ

−1(y − G(u
(j)
t ))dt+ Cup(ut)Γ

−1Σ1/2dWt.

(coupled because Cup(ut) depends on u
(j)
t for all j).

Define inner product

(8) 〈·, ·〉Γ :=
〈

Γ−1/2·,Γ−1/2·
〉
Y

and let W (j) be independent, X -valued cylindrical Brownian motions. Then by (6) and definition of
tensor product, we may rewrite (7) as

(9) du
(j)
t =

1

J

J∑
k=1

〈
G(u

(k)
t )− Gt,

[
y − G(u

(j)
t )
]
dt+ Σ1/2dW

(j)
t

〉
Γ

(
u

(k)
t − ut

)
with ut and Gt defined as in (3a) for the ensemble ut.

3.2. Linear noise-free case. Suppose Gh = Ah for linear operator A : X → Y, and Σ ≡ 0. Then (9)
becomes

(10) du
(j)
t =

1

J

J∑
k=1

〈
A(u

(k)
t − ut), y −Au(j)

t

〉
Γ

(u
(k)
t − ut).

Given empirical covariance operator

C(u) :=
1

J

J∑
j=1

(
u(k) − u

)
⊗
(
u(k) − u

)
,

(10) becomes

(11) du
(j)
t = −C(ut)DuΦ(u

(j)
t ; y)dt

for data-model misfit

Φ(u; y) =
1

2

∥∥∥Γ−1/2(y −Au)
∥∥∥2

Y
.

Interpretation: Each particle u
(j)
t performs gradient descent for Φ(· ; y), where the gradient is precondi-

tioned by the empirical covariance operator C. The preconditioning for each gradient flow is the same.
Preconditioning makes gradient flow nonlinear, even though G = A is linear. Since C is positive semidef-
inite,

d

dt
Φ(ut; y) ≤ 0.

Question (global existence of gradient flow): does a solution (ut)0≤t≤T exist for all T > 0?

4. Asymptotic behaviour in linear setting

Recall A : X → Y is linear.
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4.1. Noise-free case. Suppose data y is image of truth u† ∈ X under A. Define: deviation of particle
/ ensemble member from ensemble mean

e(j) = u(j) − u,
deviation of particle / ensemble member from truth underlying data

r(j) = u(j) − u†,
and matrices E,R, F ∈ RJ×J by

Eij =
〈
Ae(i), Ae(j)

〉
Γ
, Rij =

〈
Ar(i), Ar(j)

〉
Γ
, Fij =

〈
Ar(j), Ae(j)

〉
Γ
.

Properties

• E,R symmetric
• E(0) = XΛ(0)X> for X orthogonal matrix of eigenvectors of E(0),
• E1 = F1 = 0 for vector of 1’s in RJ .

Theorem 4.1. [1, Theorem 2] Let X0 = span
{
u

(j)
0 , 1 ≤ j ≤ J

}
. Then (10) has a unique solution

u(j)(·) ∈ C([0,∞);X0) for 1 ≤ j ≤ J .

Interpretation: invariant subspace property holds for continuous case (compare with Lemma 2.1).

Proof. (Sketch only): RHS of (11) is locally Lipschitz  local existence in C([0, T );X0 for some T > 0
since dimX0 < ∞. Can show that Et and Ft are bounded by a constant depending on u0 but not
on t  global bound on u with constant depending on u0 and growing exponentially with t  global
existence. �

Next result show ensemble collapse to mean at algebraic rate. Rate slows down linearly as ensemble
size J increases.

Theorem 4.2. [1, Theorem 3] The matrix-valued process converges to zero, with ‖Et‖ = O(J−1t).

Proof. (Sketch only) Can show that

dE

dt
= − 2

J
E2, E0 = XΛ(0)X>.

with Λ(0) = diag(λ
(1)
0 , . . . λ

(J)
0 ). Then

Et = XΛ(t)X>,

with k-th diagonal entry of Λ(t) being (2t/J + λ(k)0)−1 if λ
(k)
0 6= 0 and is zero otherwise. �

Theorem 4 in paper characterises relation between approximation quality of initial ensemble (u
(j)
0 )Jj=1

and convergence behaviour of residuals (r
(j)
t )t≥0 for 1 ≤ j ≤ J . Roughly: under suitable conditions,

Ar
(j)
t decomposes as orthogonal sum of terms in span of (Ae

(j)
0 )Jj=1 and orthogonal complement of this

span in 〈·, ·〉Γ. Terms in the span converge to zero as t → ∞ for all j; terms in orthogonal complement
remain constant.

4.2. Noisy observational data. Suppose (0a) holds, where G = A, additive noise η ∈ RK . Similar
results as Theorems 2 and 3 above hold.
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