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Introduction



Introduction i

▶ The Bayesian perspective on inverse problems has attracted much
mathematical attention in recent years (Kaipio and Somersalo, 2005;
Stuart, 2010).

▶ Particular attention has been paid to Bayesian inverse problems (BIPs) in
which the parameter to be inferred lies in an infinite-dimensional space,
a typical example being a scalar or tensor field u coupled to some
observed data y via an ODE or PDE.

▶ Numerical solution of such infinite-dimensional BIPs must necessarily be
performed in an approximate manner on a finite-dimensional subspace,
but it is profitable to delay discretisation to the last possible moment.

▶ Infinite-dimensional well-posedness results and algorithms descend to
finite-dimensional subspaces in a discretisation-independent way
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Introduction ii

▶ Careless early discretisation may lead to a sequence of well-posed
finite-dimensional BIPs or algorithms whose stability properties
degenerate as the discretisation dimension increases.

▶ Well-posedness results have been established for infinite-dimensional
Gaussian priors by Stuart (2010), for Besov priors by Dashti et al. (2012),
and for log-concave priors by Hosseini and Nigam (2016).

▶ Parallel approach of discretisation invariance, introduced by Lehtinen in
the 1990s and advanced by e.g. Lassas et al. (2009): finite-dimensional
BIP is the primary object, but care is taken to ensure the existence of a
well-defined continuum limit.

▶ A common assumption in these works is some exponential integrability
of the prior, and one aim here is to relax this by permitting the prior to
be heavy-tailed in the sense of only having finite polynomial moments
of order 0 ≤ p < α for some α <∞.
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Prototype: Cauchy Distributions i

▶ The Cauchy distribution on R with location δ ∈ R and width γ > 0:

dC(δ, γ)
du (u) = 1

γπ

1
1+ ((u− δ)/γ)2

. (1)

▶ C(δ, γ) is the law of the ratio of two independent Gaussians:

δ +
x
z ∼ C(δ, γ) when x ∼ N (0, γ2), z ∼ N (0, 1) are independent.

▶ C(δ, γ) is radial projection of uniform angular measure onto a line:

θ ∼ Uniform b

u ∼ C(δ, γ)

u = δ

γ
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Prototype: Cauchy Distributions ii

▶ C(δ, γ) has no well-defined mean, even though it is ‘obviously’ centred
on its median/mode δ, nor indeed polynomial moments of any order
greater than α = 1.

▶ Despite this, the Cauchy distribution arises naturally in even quite
elementary applications.

▶ Markkanen et al. (2016) have recently proposed the use of heavy-tailed
priors for edge-preserving Bayesian inversion in X-ray tomography,
where the seemingly natural choice of a total variation regularisation
term cannot be interpreted as a discretisation-invariant Bayesian prior
(Lassas and Siltanen, 2004).
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Samples from Heavy-Tailed Laws i

▶ Using a heavy-tailed prior instead of one with exponentially small tails
corresponds to a prior belief that large deviations are not exponentially
rare events.

▶ The information-theoretic difference between the two modelling
assumptions can be extreme: the Kullback–Leibler divergences (relative
entropies) are

DKL(N (0, 1)∥C(0, 1)) ≈ 0.2592 <∞ but DKL(C(0, 1)∥N (0, 1)) = ∞.

▶ Thus, the approximation of a heavy-tailed Cauchy prior by a thin-tailed
Gaussian prior represents an infinite information loss.

▶ However, asymmetrically, the ‘defensive’ adoption of a Cauchy prior in
place of a Gaussian one represents a mild information loss, with which
one gains access to large deviations that would be exponentially rare in
the Gaussian model.
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Samples from Heavy-Tailed Laws ii

Cauchy coefficients Gaussian coefficients
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Bayesian Inverse Problems



Inverse Problems

Inverse Problem
Given spaces U and Y , and a known forward operator G : U → Y , recover
u ∈ U from an imperfect observation y ∈ Y of G(u).

▶ A simple example is an inverse problem with additive noise, e.g.

y = G(u) + η, (2)

where η is a draw from a Y-valued random variable, e.g. a Gaussian
η ∼ N (0, Γ).

▶ Crucially, we assume knowledge of the probability distribution of η, but
not its exact value.
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Bayesian Inverse Problems i

▶ Inverse problems are typically ill-posed: no solution, multiple solutions,
or solutions highly sensitive to the observed data y.

▶ There is a long tradition dating back to Tikhonov (1963) and others of
addressing such problems using regularisation:

u ≈ uMAP := argmin 12
∥∥Γ−1/2(G( ·)− y)

∥∥2
Y︸ ︷︷ ︸

=:Φ( · ;y)

+R( ·).

▶ The Bayesian approach (Kaipio and Somersalo, 2005; Stuart, 2010) is to
interpret both u and y as random variables, and relations such as (2) as
defining the conditional distribution of y given u.

▶ Beliefs about u independent of y — e.g. about smoothness — are
phrased in the form of a prior distribution µ0 ∈ M1(U).
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Bayesian Inverse Problems ii

Bayesian Inverse Problem (BIP)
Find the posterior distribution µy ∈ M1(U), i.e. the conditional distribution
of u|y, or summary statistics such as the conditional mean (CM) estimator
or maximum a posteriori (MAP) estimator.

▶ Φ: U × Y → R denotes the misfit or negative log-likelihood:

P[y ∈ E|u] =
∫
E
exp(−Φ(u; y))dϱ(y)

/∫
Y
exp(−Φ(u; y))dϱ(y) ,

where ϱ is some σ-finite reference measure on Y .
▶ In this setting, the generalised Bayes formula for µy is

dµy
dµ0

(u) = exp(−Φ(u; y))
Z(y) ,

Z(y) = Eu∼µ0
[
exp(−Φ(u; y))

]
.
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Well-Posedness on Function Spaces i

Well-Posedness of the BIP à la Hadamard
µy should be well-defined for each y ∈ Y , i.e. 0 < Z(y) <∞, and µy should
change continuously under

▶ perturbation of the observed data y to some y′ ∈ Y ; and
▶ perturbation of the likelihood, e.g. approximation of Φ by ΦN.

▶ In computational practice we always work with ΦN : UN × YN → R

defined on finite-dimensional subspaces UN ⊂ U , YN ⊂ Y .
▶ It is not enough to study the discrete problem for fixed N.
▶ One cautionary example was provided by Lassas and Siltanen (2004):
you attempt N-pixel reconstruction of a noisily observed piecewise
smooth image, and you allow for edges in the reconstruction u(N) by
using the total variation prior µ0

(
u(N)

)
∝ exp

(
−αN

∥∥u(N)∥∥TV).
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Well-Posedness on Function Spaces ii

Example: Lassas and Siltanen (2004)

µy
(
u(N)

)
∝ exp

− 1
2σ2

∥∥Gu(N) − y
∥∥2
Y−αN

N−1∑
j=1

∣∣u(N)j+1 − u(N)j
∣∣

▶ In one non-trivial scaling of the TV norm prior (αN ∼ 1), the MAP
estimators converge in bounded variation, but the TV priors diverge, and
so do the CM estimators.

▶ In another non-trivial scaling (αN ∼
√
N), the posterior converges to a

Gaussian random variable, so the CM estimator is not edge-preserving,
and the MAP estimator converges to zero.

▶ In all other scalings, the TV prior distributions diverge and the MAP
estimators either diverge or converge to a useless limit.
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Stable Distributions on R and
Quasi-Banach Spaces



Stable Distributions

▶ The family of stable distributions has been studied extensively in the
statistical and probabilistic literature.

▶ A random variable u is stable of order α ∈ (0, 2] if
n∑
i=1

ui
d
= n1/αu+ d for some d ∈ R,

and is strictly stable if this holds with d = 0. In terms of the law µ of u
and the rescaling µn(E) := µ(n1/αE),

µ = (µn ⋆ · · · ⋆ µn)︸ ︷︷ ︸
n-fold convolution

(E+ d) for all Borel-measurable E.

▶ Stability is an appealing property if the aim is to construct Bayesian
priors that are ‘physically consistent’ in the sense of remaining in the
same model class regardless of discretisation or coordinate choices, at
least when the ‘physical quantity’ obeys an additive law.
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Stable Distributions

Example

▶ Suppose that the aim is to model (and later infer, in a Bayesian fashion)
the distribution of electrical charge in some domain Ω ⊆ R3.

▶ For computation, Ω is approximated by a triangulation T .
▶ Consider two elements T1, T2 ∈ T . If charge(Ti) is stably distributed, then
so too is

charge(T1 ∪ T2) = charge(T1) + charge(T2).

▶ The charge density charge(Ti)/ volume(Ti) behaves similarly.
▶ Thus, we remain in the same stable model class if we coarsen or refine
the mesh T ; this would not be true for an unstable random model of the
charge, and this would undesirably complicate computational modelling.
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Stable Distributions: Definition and Properties i

▶ Real-valued stable random variables are classified by four parameters: u
is stably distributed with index of stability α ∈ (0, 2], skewness
β ∈ [−1, 1], scale γ ≥ 0, and location δ ∈ R, denoted u ∼ S(α, β, γ, δ; 0), if
its characteristic function E

[
exp(itu)

]
is{

exp
(
iδt− γα|t|α[1+ iβ(tan πα

2 )(sgn t)(|γt|1−α − 1)]
)

if α ̸= 1,
exp

(
iδt− γ|t|[1+ iβ 2

π (sgn t) log γ|t|]
)

if α = 1.

(The convention here is that 0 log 0 := lims↘0 s log s = 0.)
▶ If γ = 1 and δ = 0, then u is standardised and we write u ∼ S(α, β; 0).
▶ A stable random variable u has a smooth Lebesgue density, but exact
formulae for this density are not available except in special cases:

N (m, σ2) = S(2, 0, σ/
√
2,m; 0) C(δ, γ) = S(1, 0, γ, δ; 0).
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Stable Distributions: Definition and Properties ii

Theorem (Nolan, 2015, Proposition 1.16)

If u ∼ S(α, β, γ, δ; 0), then, for a ̸= 0 and b ∈ R,

au+ b ∼ S(α, (sgna)β, |a|γ,aδ + b; 0).

Also, if ui ∼ S(α, βi, γi, δi; 0) and u2 ∼ S(α, β2, γ2, δ2; 0) are independent, then
u1 + u2 ∼ S(α, β, γ, δ; 0) with

β :=
β1γ

α
1 + β2γ

α
2

γα1 + γα2
,

γα := γα1 + γα2 ,

δ :=

{
δ1 + δ2 + (tan πα

2 )(βγ − β1γ1 − β2γ2), if α ̸= 1,
δ1 + δ2 +

2
π (βγ log γ − β1γ1 log γ1 − β2γ2 log γ2), if α = 1.
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Stable Distributions: Definition and Properties iii

▶ The stable distributions with α = 2 are exactly the Gaussian measures:
by Fernique’s theorem, Gaussian measures are exponentially integrable,
and in particular have polynomial moments of all orders.

▶ Conversely, for α ∈ (0, 2), the stable distributions are all heavy-tailed:
when u ∼ S(α, β, γ, 0; 0) with 0 < α < 2,

E
[
|u|p

]
=

{
Cα,βγα <∞, for 0 < p < α,
∞, for p ≥ α.

▶ Asymptotic power laws for probability density function and tail
probabilities (Nolan, 2015, Theorem 1.12):

P[u > x] ∼ cαγα(1+ β)x−α, ρu(x) ∼ cααγα(1+ β)x−(α+1) as x→ ∞.

Similar expressions hold for the behaviour as x→ −∞.
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Defining U-Valued Stable Random Variables

▶ Now consider the problem of constructing and sampling heavy-tailed
stable probability measures on a real quasi-Banach space U :

∥u+ v∥U ≤ K
(
∥u∥U + ∥v∥U

)
.

E.g. vector spaces ℓp, 0 < p ≤ ∞, of summable sequences or a Sobolev
space of fields of specified smoothness.

▶ Supposing that one already has access to a generator of real-valued
stable random variables (Chambers et al., 1976), it is natural to try to
define a U-valued stable random variable via a random series

u :=
∑
n∈N

unψn, (3)

where the ψn are a basis for U and the un are R-valued stable random
variables.

▶ The natural question is, when does (3) define a bona fide U-valued
random variable?
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Defining U-Valued Stable Random Variables

▶ We assume U to be a real quasi-Banach space with countable,
unconditional, normalised, Schauder basis (ψn)n∈N.

▶ The basis (ψn)n∈N and q > 0 are such that the synthesis operator
Sψ : ℓq → U defined by Sϕ : (vn)n∈N 7→

∑
n∈N vnψn is a continuous

embedding, i.e. ∥∥∥∥∥∑
n∈N

vnψn

∥∥∥∥∥
U

≤ C∥v∥ℓq . (4)

▶ If U is Banach, this assumption holds with q = 1 for any basis.
▶ If inequality (4) can be reversed, possibly with a different constant, then
the basis (ψn)n∈N is known as a q-frame for U (Christensen and Stoeva,
2003).

▶ The case q = 2 is the well-known notion of a Riesz basis.
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Almost-Sure Convergence Theorem

Theorem (Well-definedness of U-valued stable RVs)

Let u :=
∑

n∈N unψn have independent stable coefficients
un ∼ S(α, βn, γn, δn; 0), where α ∈ (0, 2), β ⊂ (−1, 1), γ ∈ ℓα, δ ∈ ℓq and, in
addition,

[γ]ℓα log ℓ :=
∑
n∈N

∣∣γαn log |γn|∣∣ <∞, if α = q or 2q. (5)

Then the series defining u converges in U a.s., and hence defines a U-valued
random variable u.

The proof revolves around Kolmogorov’s three series theorem: it suffices to
establish summability w.r.t. n ∈ N, for some A > 0, of

P
[
|γnûn| > A

]
and E

[
|γnûn|p1[|γnûn| < A]

]
for p = 1, 2

for standardised independent ûn ∼ S(α, βn; 0).
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U-valued Cauchy random variables i

Example (U-valued Cauchy random variables)

▶ If U is Banach (so q = 1) and un ∼ C(0, γn), then

P
[
|γnun| ≥ A

]
= 1− 2

π
arctan A

γn
,

E
[
|γnun|1[|γnun| < A]

]
=
γn
π
log

(
1+ A2

γ2n

)
,

E
[
|γnun|21[|γnun| < A]

]
=
2Aγn
π

+
2γ2n
π
arctan A

γn
.

▶ Consistent with Theorem 3, these three series all converge if [γ]ℓ log ℓ is
finite, and in particular if γn = O(n−p) for some p > 1.

▶ When this convergence holds, the random series defining u converges
a.s. in U , and thereby defines a U-valued Cauchy random variable.
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U-valued Cauchy random variables ii

Caution

▶ Condition (5), requiring that the Orlicz norm-like quantity [γ]ℓ log ℓ be
finite, cannot be weakened to just requiring that γ ∈ ℓ1.

▶ For example, for γn := n−1(logn)−2, the integral test reveals that∑
n≥2 |γn| <∞ but

∑
n≥2 |γn log γn| = ∞; in this situation, summability of

the truncated first absolute moments of the coefficients γnûn is no
longer assured.

▶ However, for polynomial γ, the ℓ1 and Orlicz criteria do coincide: for
γn = Cn−p, ∥γ∥ℓ1 is finite once p > 1, and then ∥γ∥ℓ log ℓ is also finite.
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Fractional Lower-Order Moments i

Theorem (pth-mean convergence and fractional lower-order moments)

Let u ∼ S(α, β, γ, δ; 0) satisfy the assumptions of Theorem 3, and suppose
that (ψn)n∈N satisfies (4) for some q > 0. Let 0 < p ≤ q and p < α. Then∑N

n=1 unψn → u in Lp(Ω,P;U) as N→ ∞ and, in particular,

∥u∥pLp(Ω,P;U) ≡ E
[
∥u∥pU

]
≤ C∥γ∥ℓα + C∥δ∥ℓq <∞. (6)

Example: Wavelet Bases
An α-stable U-valued random variable in a (Riesz) wavelet basis has finite
pth moments of all orders 0 < p < α.
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Well-Posedness of BIPs



Assumptions for Well-Posedness i

U and Y are real separable quasi-Banach spaces and the misfit function
Φ: U × Y → R satisfies the following:

(A0) Φ is a locally bounded Carathéodory function, i.e. Φ(u; ·) is continuous
for each u ∈ U , Φ( · ; y) is measurable for each y ∈ Y , and for every r > 0,
there exists M0,r ∈ R such that, for all (u, y) ∈ U × Y with ∥u∥U < r and
∥y∥Y < r,

|Φ(u; y)| ≤ M0,r.

(A1) For every r > 0, there exists a measurable M1,r : R+ → R such that, for all
(u, y) ∈ U × Y with ∥y∥Y < r and ∥u∥U large enough,

Φ(u; y) ≥ M1,r
(
∥u∥U

)
.
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Assumptions for Well-Posedness ii

(A2) For every r > 0, there exists a measurable M2,r : R+ → R+ such that, for
all (u, y1, y2) ∈ U × Y × Y with ∥y1∥Y < r, ∥y2∥Y < r,

|Φ(u; y1)− Φ(u; y2)| ≤ exp
(
M2,r

(
∥u∥U

))
∥y1 − y2∥Y .

Furthermore, for each N ∈ N, ΦN : U × Y → R is an approximation to Φ that
satisfies (A0)–(A2) with Mi,r independent of N, and such that

(A3) Ψ: N → R+ is such that, for every r > 0, there exists a measurable
M3,r : R+ → R+, such that, for all (u, y) ∈ U × Y with ∥y∥Y < r,

|ΦN(u; y)− Φ(u; y)| ≤ exp
(
M3,r

(
∥u∥U

))
Ψ(N).

Under these assumptions, following the same proof strategies as in Stuart
(2010), Dashti and Stuart (2015)…
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Well-Posedness of the BIP I

Theorem (Well-definedness of the Bayesian posterior)

Let µ0 be a Borel probability measure on U , and let y ∈ Y . If (A0) and (A1)
hold with

S1,r := Eu∼µ0
[
exp(−M1,r(∥u∥U ))

]
<∞, (7)

then Z(y) := Eu∼µ0
[
exp(−Φ(u; y))

]
is strictly positive and finite, and setting

dµy
dµ0

(u) = exp(−Φ(u; y))
Z(y)

defines a Borel probability measure µy on U , which is tight in the sense that,
for all measurable E ⊆ U ,

µy(E) = sup{µy(K) | K ⊆ E and K ⊂ U is compact}.
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Well-Posedness of the BIP II

Theorem (Perturbation of observed data)

Suppose that r > 0 is such that (A0)–(A2) hold with

S1,2,r := Eu∼µ0
[
exp(2M2,r(∥u∥U )−M1,r(∥u∥U ))

]
<∞. (8)

Then there exists a constant C, which may depend on r, S1,2,r, and the
constants and functions in (A0)–(A2), such that, whenever ∥y∥Y , ∥y′∥Y < r,

|Z(y)− Z(y′)| ≤ C∥y− y′∥Y
and dH

(
µy, µy

′)
≤ C∥y− y′∥Y .
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Hellinger Distance

▶ dH denotes the Hellinger metric onM1(U), defined by

dH(µ, ν)2 =
∫
U

∣∣∣∣∣
√
dµ
dλ (u)−

√
dν
dλ (u)

∣∣∣∣∣
2

dλ(u),

where λ is any σ-finite Borel measure on U with respect to which both µ
and ν are absolutely continuous, e.g. λ := µ+ ν .

▶ The Hellinger topology coincides with the total variation topology (Kraft);
it is strictly weaker than the Kullback–Leibler / relative entropy topology
(Pinkser); all these topologies are strictly stronger than the weak
convergence topology.

▶ Expected values of square-integrable functions are Lipschitz continuous
with respect to dH:∣∣Eµ[f]− Eν [f]

∣∣ ≤ √
2
√
Eµ

[
|f|2

]
+ Eν

[
|f|2

]
dH(µ, ν).

In particular, |Eµ[f]− Eν [f]| ≤ 2∥f∥∞dH(µ, ν).
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Well-Posedness of the BIP III

Theorem (Perturbation of likelihood)

Let Φ and ΦN satisfy (A0)–(A3), and suppose that, for some r > 0,

S1,3,r := Eu∼µ0
[
exp(2M3,r(∥u∥U )−M1,r(∥u∥U ))

]
<∞. (9)

Then there exists a constant C, which may depend on r, S1,3,r, and the
constants and functions in (A0)–(A3) but is independent of N, such that the
posteriors µy and µyN, arrived at using the same data y with ∥y∥Y < r but the
misfit functions Φ and ΦN respectively, satisfy

dH
(
µy, µyN

)
≤ CΨ(N).

The moral here is that the convergence rate of the forward problem (from
numerical analysis) transfers to the BIP.

30/34



Application to Heavy-Tailed Priors

▶ It is interesting to note the range of applicability of Theorems 6, 7, and 8
when the prior µ0 is the probability law of a U-valued α-stable random
variable.

▶ Morally, a BIP with stable prior has a well-defined posterior provided
that Φ( · ; y) diverges to −∞ no faster than logarithmically (cf. no faster
than polynomially for Gaussian and Besov priors).

▶ Similarly, (8) is satisfied and gives well-posedness with respect to y if
2M2,r(t)−M1,r(t) ̸→ +∞ faster than logarithmically, and (9) is satisfied
and gives well-posedness with respect to ΦN if 2M3,r(t)−M1,r(t) ̸→ +∞
faster than logarithmically.
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Closing Remarks



Closing Remarks

▶ The BIP framework of Stuart (2010) can be extended to allow for
infinite-dimensional analogues of stable distributions as priors,
sampled using an analogue of the classical Karhunen–Loève expansion,
and with an analogous well-posedness theory for the posterior.
Complete linear spaces with a weakened triangle inequality are also ok.

▶ Details at arXiv:1605.05898.
▶ Next steps:

▶ Well-posedness in stronger probability metrics, e.g. Kullback–Leibler?
▶ Posterior consistency: does µy concentrate on u† in the limit of infinitely

many or infinitely precise observations? If so, at what rate?
▶ Connection with applications, e.g. non-smooth image reconstruction à la

Markkanen et al. (2016).
▶ Point estimators (e.g. MAP estimators) for BIPs with heavy-tailed priors, à la

Dashti et al. (2013) and Helin and Burger (2015).
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