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Introduction



Inverse Problems i

▶ Inverse problems — the recovery of parameters in a mathematical model that ‘best
match’ some observations — are ubiquitous in applied mathematics.

▶ The Bayesian probabilistic perspective on blending models and data is arguably a
great success story of late 20th–early 21st Century mathematics — e.g. numerical
weather prediction.

▶ This perspective on inverse problems has attracted much mathematical attention in
recent years (Kaipio and Somersalo, 2005; Stuart, 2010). It has led to algorithmic
improvements as well as theoretical understanding — and highlighted serious open
questions.
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Inverse Problems ii

▶ Particular mathematical attention has fallen on Bayesian inverse problems (BIPs) in
which the parameter to be inferred lies in an infinite-dimensional spaceU , e.g. a
scalar or tensor field u coupled to some observed data y via an ODE or PDE.

▶ Numerical solution of such infinite-dimensional BIPs must necessarily be
performed in an approximate manner on a finite-dimensional subspaceU (n), but it
is profitable to delay discretisation to the last possible moment.

▶ Careless early discretisation may lead to a sequence of well-posed
finite-dimensional BIPs or algorithms whose stability properties degenerate as the
discretisation dimension increases.
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A Little History

Prehistory
Bayes (1763) and Laplace (1812, 1814) lay the foundations of inverse probability.

Late 1980s–Early 1990s
Physicists notice that well-posed inferences degenerate in high finite dimension —
resolution (in)dependence.

Late 1990s–Early 2000s
The Finnish school, e.g. Lassas and Siltanen (2004), formulate discretisation invariance
of finite-dimensional problems.

Since 2010
Stuart (2010) advocates direct study of BIPs on function spaces.
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Inverse Problems i

Forward Problem
Given spacesU and Y , a forward operator G : U → Y , and u ∈U , find y := G(u).

Inverse Problem
Given spacesU and Y , a forward operator G : U → Y , and y ∈ Y , find u ∈U such that
G(u) = y.

▶ The distinction between forward and inverse problems is somewhat subjective,
since many ‘forward’ problems involve inversion, e.g. of a square matrix, or a
differential operator, etc.

▶ In practice, the forward model G is only an approximation to reality, and the
observed data is imperfect or corrupted.
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Inverse Problems ii

Inverse Problem (revised)
Given spacesU and Y , and a forward operator G : U → Y , recover u ∈U from an
imperfect observation y ∈ Y of G(u).

▶ A simple example is an inverse problem with additive noise, e.g.

y = G(u) + η,

where η is a draw from a Y -valued random variable, e.g. a Gaussian η ∼ N (0, Γ).
▶ Crucially, we assume knowledge of the probability distribution of η, but not its exact
value.
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PDE Inverse Problems i

Lan et al. (2016)

Darcy flow inverse problem: recover u such that −∇ · (u∇p) = f in D ⊂ R3, plus
boundary conditions, from pointwise measurements of p and f.
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PDE Inverse Problems ii

Dunlop and Stuart (2016a)

Electrical impedance tomography: recover
conductivity field σ

−∇ · (σ∇v) = 0 in D

σ
∂v
∂n = 0 on ∂D \

∪
j
ej

from voltage and current on boundary
electrodes ej:∫

ej
σ
∂v
∂n = Ij

v+ zjσ
∂v
∂n = Vj on ej.
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PDE Inverse Problems iii

Numerical weather prediction:
▶ recover pressure, temperature, humidity,
velocity fields etc. from meteorological
observations

▶ reconcile them with numerical solution of the
Navier–Stokes equations etc.

▶ predict into the future
▶ within a tight computational and time budget

ECMWF/DWD/NOAA/NASA
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Bayesian Inverse Problems



Least Squares and Classical Regularisation i

▶ Prototypical ill-posed problem from linear algebra: given A ∈ Rm×n and
y ∈ Y = Rm, find u ∈U = Rn such that

y = Au.

▶ More often: recover u from y := Au+ η.
▶ If η is centred with covariance matrix Γ ∈ Rm×m, then the Gauss–Markov theorem
says that (in the sense of minimum variance, and minimum expected squared error)
the best estimator of u minimises the weighted misfit Φ: Rn → R,

Φ(u) := 1
2
∥∥Au− y∥∥2

Γ
=
1
2
∥∥Γ−1/2(Au− y)∥∥22.

11



Least Squares and Classical Regularisation ii

▶ A least-squares solution will exist, but may be non-unique and depend very
sensitively upon y through ill-conditioning of A∗Γ−1A.

▶ The classical way of simultaneously enforcing uniqueness, stabilising the problem,
and encoding prior beliefs about what a ‘good guess’ for u is to regularise the
problem:

minimise Φ(u) + R(u)

▶ classical Tikhonov (1963) regularisation: R(u) = 1
2∥u∥

2
2

▶ weighted Tikhonov / ridge regression: R(u) = 1
2
∥∥C−1/20 (u− u0)

∥∥2
2

▶ LASSO: R(u) = 1
2
∥∥C−1/20 (u− u0)

∥∥
1

▶ Bayesian probabilistic interpretation: regularisations encode priors µ0 for u with
Lebesgue densities dµ0

dΛ (u) ∝ exp(−R(u)) .
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Bayesian Inverse Problems

▶ The variational approach does not easily select among multiple minimisers. Why
prefer one with small Hessian to one with large Hessian?

▶ In the Bayesian formulation of the inverse problem (BIP) (Kaipio and Somersalo,
2005; Stuart, 2010):
▶ u is aU -valued random variable, initially distributed according to a prior probability
distribution µ0 onU ;

▶ the forward map G and the structure of the observational noise determine a
probability distribution for y|u;

▶ and the solution is the posterior distribution µy of u|y.

▶ ‘Lifting’ the inverse problem to a BIP resolves several well-posedness issues, but
also raises new challenges in the definition, analysis, and access of µy.
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Bayesian Modelling Setup

Prior measure µ0 onU :
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Bayesian Modelling Setup

Prior measure µ0 onU :

Joint measure µ onU × Y :

↑
Y

↓

←U →
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Bayesian Modelling Setup

Prior measure µ0 onU :

Joint measure µ onU × Y :

↑
Y

↓

←U →

y
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Bayesian Modelling Setup

Prior measure µ0 onU :

Joint measure µ onU × Y :

↑
Y

↓

←U →

y

Posterior measure µy := µ0( · |y) ∝ µ|U×{y} onU :
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Bayes’s Rule

Theorem (Bayes’s rule in discrete form)
If u and y assume only finitely many values with probabilities 0 ≤ p(u) ≤ 1 etc., then

p(u|y) = p(y|u)p(u)∑n
u′=1 p(y|u′)p(u′)

.
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Bayes’s Rule

p(u|y) = p(y|u)p(u)∑n
u′=1 p(y|u′)p(u′)

.

Theorem (Bayes’s rule with Lebesgue densities)
If u and y have positive joint Lebesgue density ρ(u, y) on finite- dimensional space
U × Y , then

ρ(u|y) = ρ(y|u)ρ(u)∫
U ρ(y|u′)ρ(u′)du′ .
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Bayes’s Rule

p(u|y) = p(y|u)p(u)∑n
u′=1 p(y|u′)p(u′)

ρ(u|y) = ρ(y|u)ρ(u)∫
U ρ(y|u′)ρ(u′)du′

Theorem (General Bayes’s rule: Stuart (2010))
If G is continuous, ρ(y) has full support, and µ0(U ) = 1, then the posterior µy is
well-defined, given in terms of its probability density (Radon–Nikodym derivative) with
respect to the prior µ0 by

dµy
dµ0

(u) := exp(−Φ(u; y))
Z(y) Z(y) :=

∫
U
exp(−Φ(u; y))dµ0(u),

where the misfit potential Φ(u; y) differs from − log ρ(y− G(u)) by an additive function
of y alone.
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Prior Specification

▶ Subjective belief: classically, µ0 really is a belief about u before seeing y.
▶ Regularity: in PDE inverse problems, µ0 describes the smoothness of u, e.g. on
D ⊂ Rd, N (0, (−∆)−s) with s > d/2 charges C(D̄;R) with mass 1.

▶ Physical prediction: in data assimilation / numerical weather prediction (Reich and
Cotter, 2015; Law et al., 2015), the prior is a propagation of past analysed states.
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Questions to Ask

▶ Existence and uniqueness: does the posterior really exist as a probability measure
µy onU ?

▶ Well-posedness: does the posterior µy depend in a ‘nice’ way upon the problem
setup, e.g. errors or approximations in the observed data y, the potential Φ, the
prior µ0?

▶ Consistency: in the limit as the observational errors go to zero (or number of
observations→∞), does the posterior concentrate all its mass on u, at least
modulo non-injectivity of G?

▶ Computation: can µy be efficiently sampled (MCMC etc.), summarised or
approximated (posterior mean and variance, MAP points, etc.)?
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Why be Nonparametric? Why the Function Spaces?

▶ In computational practice, BIPs have to be discretised: we seek an approximate
solution in a finite-dimensionalU (n) ⊂U .

▶ Unfortunately, it is not enough to study the just the finite-dimensional problem.
▶ Analogy with numerical analysis of PDE: discretised wave equation is controllable
and has no finite speed of light.

▶ A cautionary example was provided by Lassas and Siltanen (2004): you attempt
n-pixel reconstruction of a piecewise smooth image, from linear observations with
additive N (0, σ2I) noise, and allow for edges in the reconstruction u(n) ∈U (n) ∼= Rn

by using the discrete total variation prior

dµ0
dΛ
(
u(n)

)
∝ exp

(
−αn

∥∥u(n)∥∥TV).
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Discretisation Invariance i

Total Variation Priors: Lassas and Siltanen (2004)

dµy
dΛ
(
u(n)

)
∝ exp

(
− 1
2σ2

∥∥Gu(n) − y∥∥2
Y
−αn

n−1∑
j=1

∣∣u(n)j+1 − u
(n)
j
∣∣)

▶ In one non-trivial scaling of the TV norm prior (αn ∼ 1), the MAP estimators converge
in bounded variation, but the TV priors diverge, and so do the CM estimators.

▶ In another non-trivial scaling (αn ∼
√
n), the posterior converges to a Gaussian

random variable, so the CM estimator is not edge-preserving, and the MAP estimator
converges to zero.

▶ In all other scalings, the TV prior distributions diverge and the MAP estimators
either diverge or converge to a useless limit.
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Discretisation Invariance ii

Lassas and Siltanen (2004)
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Why be Nonparametric? Why the Function Spaces?

▶ The infinite-dimensional point of view is also very useful for constructing
dimensionally-robust sampling schemes, e.g. the Crank–Nicolson proposal of Cotter
et al. (2013) and its variants.

▶ The definition and analysis of MAP estimators (points of maximum µy-probability) in
the absence of Lebesgue measure is also mathematically challenging, but yields
yields similar fruits for robust finite-dimensional computation (Dashti et al., 2013;
Helin and Burger, 2015; Dunlop and Stuart, 2016b).
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Well-Posedness of BIPs



Ill- and Well-Posedness of Inverse Problems

▶ Recall that inverse problems are typically ill-posed: there is no u ∈U such that
G(u) = y, or there are multiple such u, or it/they depend very sensitively upon the
observed data y.

▶ Regularisation typically enforces existence; the extent to which it enforces
uniqueness and robustness depends is problem- dependent.

▶ One advantage of the Bayesian approach is that the solution is a probability
measure: the posterior µy can be shown to be exist, be unique, and stable under
perturbation.

▶ Stability in what sense…?
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Priors on Function Spaces

The following well-posedness results work for, among others,

▶ Gaussian priors (Stuart, 2010)
▶ Gaussian prior, linear forward model, quadratic misfit =⇒ Gaussian posterior, via
simple linear algebra (Schur complements).

▶ Besov priors (Lassas et al., 2009; Dashti et al., 2012).
▶ Stable priors (Sullivan, 2016) and infinitely-divisible heavy-tailed priors (Hosseini,
2016).

▶ Hierarchical priors (Agapiou et al., 2014; Dunlop et al., 2016): careful adaptation of
parameters in the above.
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Hellinger Metric

The Hellinger distance between probability measures µ and ν onU is

dH(µ, ν) :=
1
2

∫
U

[√
dµ
dr −

√
dν
dr

]2
dr = 1− Eν

[√
dµ
dν

]
,

where r is any measure with respect to which both µ and ν are absolutely continuous,
e.g. r = µ+ ν .

Lemma (Hellinger controls second moments)∣∣Eµ

[
f
]
− Eν

[
f
]∣∣ ≤ √2√Eµ

[
|f|2
]
+ Eν

[
|f|2
]
dH(µ, ν)

when f ∈ L2(U , µ) ∩ L2(U , ν) and, in particular,∣∣Eµ

[
f
]
− Eν

[
f
]∣∣ ≤ 2∥f∥∞dH(µ, ν).
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Other Distances on Probability Measures

▶ The Lévy–Prokhorov distance metrises (for separableU ) the topology of weak
convergence:

dLP(µ, ν) := inf
{
ε > 0

∣∣∀A ∈ B (U ), µ(A) ≤ ν(Aε) + ε & ν(A) ≤ µ(Aε) + ε
}
.

dLP(µn, µ) → 0 ⇐⇒
∫

U f dµn →
∫

U f dµ for all bounded continuous f

▶ The Hellinger metric is topologically equivalent to the total variation metric:

dTV(µ, ν) :=
1
2

∫
U

∣∣∣∣dµdν − 1
∣∣∣∣dν = sup

A∈B (U )

∣∣µ(A)− ν(A)∣∣.
▶ The relative entropy distance or Kullback–Leibler divergence:

DKL(µ∥ν) :=
∫

U

dµ
dν log

dµ
dν dν .
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Well-Definedness of the Posterior i

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))
Suppose that Φ is locally bounded, Carathéodory (i.e. continuous in y and measurable
in u), bounded below by Φ(u; y) ≥ M1(∥u∥U ) with exp(−M1(∥·∥U )) ∈ L1(U , µ0). Then

dµy
dµ0

(u) := exp(−Φ(u; y))
Z(y) ,

Z(y) :=
∫

U
exp(−Φ(u; y))dµ0(u) ∈ (0,∞)

does indeed define a Borel probability measure onU , which is Radon if µ0 is Radon,
and µy really is the posterior distribution of u ∼ µ0 conditioned upon the data y.
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Well-Definedness of the Posterior ii

▶ The spacesU and Y should be separable (but see Hosseini (2016)), complete, and
normed (but see Sullivan (2016)).

▶ For simplicity, the above theorem and its sequels are actually slight misstatements:
more precise formulations would be local to data y with ∥y∥Y ≤ r.

▶ The lower bound on Φ is allowed to tend to −∞ as ∥u∥U →∞ or ∥y∥Y →∞. Indeed
this is essential if dimY =∞ or if one is preparing for the limit dimY →∞.

▶ For Gaussian priors this means that quadratic blowup is allowed (Stuart, 2010); for
α-stable priors only logarithmic blowup is allowed (Sullivan, 2016).
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Well-Posedness w.r.t. Data

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))
Suppose that Φ satisfies the previous assumptions and∣∣Φ(u; y)− Φ(u; y′)

∣∣ ≤ exp(M2(∥u∥U ))
∥∥y− y′∥∥

Y

with exp(2M2(∥·∥U )−M1(∥·∥U )) ∈ L1(U , µ0). Then there exists C ≥ 0 such that

dH
(
µy, µy

′) ≤ C∥∥y− y′∥∥
Y
.

Moral
(Local) Lipschitz dependence of the potential Φ upon the data transfers to the BIP.
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Well-Posedness w.r.t. Likelihood Potential

Theorem (Stuart (2010); Sullivan (2016); Dashti and Stuart (2017))
Suppose that Φ and Φn satisfy the previous assumptions uniformly in n and∣∣Φn(u; y)− Φ(u; y)

∣∣ ≤ exp(M3(∥u∥U ))ψ(n)

with exp(2M3(∥·∥U )−M1(∥·∥U )) ∈ L1(U , µ0). Then there exists C ≥ 0 such that

dH
(
µy, µy,n

)
≤ Cψ(n).

Moral
The convergence rate of the forward problem / potential, as expressed by ψ(n),
transfers to the BIP.
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More Consequences of Approximation

▶ Even the numerical posterior µy,n will have to be approximated, e.g. by MCMC
sampling, an ensemble approximation, or a Gaussian fit.

▶ The bias and variance in this approximation should be kept at the same order as
the error µy,n − µy.

▶ It is mathematical analysis that allows the correct tradeoffs among these sources of
error/uncertainty, and hence the appropriate allocation of resources.
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Brittleness of BIPs



Well-Posedness w.r.t. Prior?

▶ As seen above, under reasonable assumptions, BIPs are well-posed in the sense
that the posterior µy is Lipschitz in the Hellinger metric with respect to the data y
and uniform changes to the likelihood Φ.

▶ What about simultaneous perturbations of the prior µ0 and likelihood model, i.e.
the full Bayesian model µ onU × Y ?

▶ When the model is well-specified and dimU <∞, we have the Bernstein–von Mises
theorem: µy concentrates on ‘the truth’ as number of samples→∞ or data noise
→ 0.

▶ Freedman (1963, 1965) showed that this can fail when dimU =∞; even limiting
inferences can be model-dependent!

▶ The situation is especially bad if the model is misspecified, i.e. doesn’t cover ‘the
truth’.
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Brittleness under Misspecification

dH(µy, µ̃y) ≤ C · dH(µ, µ̃)?
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Brittleness under Misspecification

dH(µy, µ̃y) ≤ C · dH(µ, µ̃)?

Theorem (Owhadi et al. (2015a,b))
For any misspecified model µ on ‘general’ spacesU and Y , for any Q : U → R, any any
ess infµ0 Q < q < ess supµ0 Q, there is another model µ̃ as close as you like to µ so that

Eµ̃y
[
Q
]
≈ q

for all sufficiently finely observed data y.

Moral
Closeness is measured in the Hellinger, total variation, Lévy–Prokhorov, or
common-moments topologies. BIPs are ill-posed in these topologies, because small
changes to the model give you any posterior value you want, by slightly
(de)emphasising particular parts of the data.
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Brittleness in Action

Should we worry about this?

▶ Maybe… The explicit examples in Owhadi et al. (2015a,b) have a very slow
convergence rate. Approximate priors arising from numerical inversion of
differential operators appear to have the ‘wrong’ kind of error bounds.

▶ Yes! Koskela et al. (2017), Kennedy et al. (2017), and Kurakin et al. (2017) observe
brittleness-like phenomena ‘in the wild’.

▶ No! Just stay away from high-precision data, e.g. by coarsening à la Miller and
Dunson (2015), or be more careful with the geometry of credible/confidence regions
(Castillo and Nickl, 2013, 2014), e.g. adaptive confidence regions (Szabó et al., 2015a,b).
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Closing Remarks



Conclusions and Open Problems

▶ Mathematical analysis reveals the well- and ill-posedness of Bayesian inference
procedures, which lie at the heart of many modern applications in physical and now
social sciences.

▶ This quantitative analysis allows tradeoff of errors and resources.
▶ Open topic: fundamental limits on the robustness and consistency of general
procedures.

▶ Interpreting (forward) numerical tasks as Bayesian inference tasks leads to Bayesian
probabilistic numerical methods for linear algebra, quadrature, optimisation, ODEs
and PDEs (Hennig et al., 2015; Cockayne et al., 2017).
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