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“Technology, in common with many
other activities, tends toward avoidance
of risks by investors. Uncertainty is
ruled out if possible. [P]eople generally
prefer the predictable. Few recognize
how destructive this can be, how it
imposes severe limits on variability and
thus makes whole populations fatally
vulnerable to the shocking ways our
universe can throw the dice.”
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What is Distributionally Robust UQ?

▶ In uncertainty quantification, one is usually faced with the challenge of quantifying
the impact of some uncertainty or random variability (often modelled as a
probability distribution µ) on a particular system of interest (often modelled as a
response function g).

▶ This talk is an introduction to uncertainty quantification under a particularly severe
form of uncertainty: uncertainty about µ and g themselves.

▶ This kind of uncertainty can arise very easily: we may be conducting simulations
using computational or numerical versions of µ and g that differ in some way from
their ‘real’ counterparts, or there may be non-negligible uncertainty about what the
‘real’ µ and g actually are.

▶ Nevertheless, the challenge is to provide rigorous and useful information about the
system.
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▶ The framework these lectures describe is very general, and in particular the
measure µ might be interpreted in a Bayesian or frequentist fashion.

▶ In the robust Bayesian analysis paradigm (Berger, 1994; Owhadi et al., 2015a,b),
varying µ corresponds to changing one’s prior or likelihood model.

▶ With such examples in mind, it makes sense to develop mathematical theory and
computational tools to allow us to explore admissible sets (or ‘feasible sets’) A for
what µ and g could be.

▶ The tools are grounded in optimization theory, and have a particularly strong
analogy to finite-dimensional linear programming, even though A will typically be
infinite-dimensional.
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The Principles at Work

Example (Balancing a Seesaw)
You are given 1kg of sand to arrange however you wish on a seesaw (= the real line).
Your challenge is to make the region x ≥ t, t ≥ 0, as heavy as possible subject to two
constraints:

▶ the centre of mass of the sand (and seesaw) must be at x = 0; and
▶ all the sand must be contained in a region of length ≤ L (with L ≥ t).

x = 0 x = t

▶ Optimal distributionally robust UQ can be seen as the extension of the same basic
idea to complicated settings: no hope of a pen-and-paper solution, but can
compute a numerical solution. 7/72
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▶ To begin with, we will suppress all reference to uncertain response functions and
focus only on uncertain probability measures.

▶ The reasons for doing so will become clearer later, but in essence handling the
measures first will enable huge reductions in the complexity of the response
function problem.

▶ Suppose that we are interested in the value Q(µ†) of some quantity of interest that
is a functional of a partially known probability measure µ† on a space X . (Here we
use the common notation of having daggers — † — denote the ‘truth’.)

▶ Very often, Q(µ†) arises as the expected value with respect to µ† of some function
q : X → R, so the objective is to determine

Q(µ†) ≡ EX∼µ† [q(X)].

▶ Now suppose that µ† is known only to lie in some subset A ⊆ M 1(X ). How should
we try to understand or approximate Q(µ†)?
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▶ In the absence of any further information about which µ ∈ A are more or less likely
to be µ†, and particular if the consequences of planning based on an inaccurate
estimate of Q(µ†) are very high, it makes sense to adopt a posture of ‘healthy
conservatism’ and compute bounds on Q(µ†) that are as tight as justified by the
information that µ† ∈ A , but no tighter, i.e. to find

Q(A ) := inf
µ∈A

Q(µ) and Q(A ) := sup
µ∈A

Q(µ).

▶ When Q(µ) is the expected value with respect to µ of some function q : X → R, the
objective is to determine

Q(A ) := inf
µ∈A

Eµ[q] and Q(A ) := sup
µ∈A

Eµ[q].
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▶ The inequality
Q(A ) ≤ Q(µ†) ≤ Q(A )

is, by construction, the sharpest possible bound on Q(µ†) given only information
that µ† ∈ A : any wider inequality would be unnecessarily pessimistic, with one of
its bounds not attained; any narrower inequality would ignore some feasible
scenario µ ∈ A that could be µ†.

▶ The obvious question is, can Q(A ) and Q(A ) be computed?
▶ The answer depends upon the form of the admissible set A .
▶ These notes focus upon admissible sets A of a particular but very accessible type,

those specified by equality or inequality constraints on expected values of test
functions, otherwise known as generalised moment classes.
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Example
Suppose that it is desired to give bounds on the CDF of some output Y = g(X) of a
manufacturing process in which the probability distribution of the inputs X is partially
known. For example, quality control procedures may prescribe upper and lower
bounds on the CDF of X, e.g.

0 ≤ PX∼µ† [−∞ < X ≤ a] ≤ 0.1
0.8 ≤ PX∼µ† [a < X ≤ b] ≤ 1.0
0 ≤ PX∼µ† [b < X ≤ ∞] ≤ 0.1.

Let A denote the (infinite-dimensional) set of all probability measures µ on R that are
consistent with these three inequality constraints. Given the input-to-output map g,
what are optimal bounds on the cumulative distribution function of Y, i.e., for t ∈ R,
what are

inf
µ∈A

PX∼µ[g(X) ≤ t] and sup
µ∈A

PX∼µ[g(X) ≤ t]?. (1)
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Example

▶ We will show that these extremal values can be found by solving an optimisation
problem involving at most eight optimisation variables, namely four possible values
x0, . . . , x3 ∈ R for X, and the four corresponding probability masses w0, . . . ,w3 ≥ 0
that sum to unity.

▶ In general, this problem is a non-convex global optimisation problem that can only
be solved approximately.

▶ However, for fixed positions {xi}3i=0, the optimal weights {wi}3i=0 can be determined
quickly and accurately using the tools of linear programming.

▶ Problem (1) reduces to a nonlinear family of linear programs, parametrised by
{xi}3i=0.
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Example

extremise:
3∑

i=0
wi1[g(xi) ≤ t] ;

w.r.t.: x0, . . . , x3 ∈ R and w0, . . . ,w3 ≥ 0 ;

subject to:
3∑

i=0
wi = 1 ,

0 ≤
3∑

i=0
wi1[xi ≤ a] ≤ 0.1 ,

0.8 ≤
3∑

i=0
wi1[a < xi ≤ b] ≤ 1.0 ,

0 ≤
3∑

i=0
wi1[xi > b] ≤ 0.1 .
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▶ By way of contrast, the Maximum Entropy approach seeks to approximate Q(µ†),
knowing only that µ† ∈ A , by selecting a particular ‘generic’ representative of the
class A .

Definition
The Principle of Maximum Entropy states that if all one knows about a probability
measure µ is that it lies in some set A ⊆ M 1(X ), then one should take µ to be the
element µME ∈ A of maximum entropy.

▶ There are many heuristics underlying the MaxEnt Principle, including appeals to
equilibrium thermodynamics and attractive derivations due to Wallis and Jaynes
(2003).

▶ If entropy is understood as being a measure of uninformativeness, then the MaxEnt
Principle can be seen as an attempt to avoid bias by selecting the ‘least biased’ or
‘most uninformative’ distribution.
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Example (Unconstrained maximum entropy distributions)
If X = {1, . . . ,m} and p ∈ Rm

>0 is a probability measure on X , then the entropy of p is

H(p) := −
m∑
i=1

pi logpi. (1)

The only constraints on p are the natural ones that pi ≥ 0 and that
∑m

i=1 pi = 1. Using
the method of Lagrange multipliers, the unique extremiser of H(p) among
{p ∈ Rm | pi ≥ 0,

∑m
i=1 pi = 1} is the uniform distribution p1 = · · · = pm = 1

m .
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Example (Constrained maximum entropy distributions)

Consider the set of all probability measures µ on R that have mean m and variance s2;
what is the maximum entropy distribution in this set? Consider probability measures µ
that are absolutely continuous with respect to Lebesgue measure, having density ρ.
Then the aim is to find µ = ρdx to maximise

H(ρ) = −
∫
R

ρ(x) log ρ(x)dx,

subject to the constraints that ρ ≥ 0,
∫
R
ρ(x)dx = 1,

∫
R
xρ(x)dx = m and∫

R
(x−m)2ρ(x)dx = s2. The method of Lagrange multipliers yields that the maximum

entropy distribution on R of with mean m and variance s2 is N (m, s2), with entropy

H(N (m, s2)) = 1
2 log(2πes2).
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Discrete Entropy and Convex Programming

▶ In discrete settings, the entropy of a probability measure p ∈ M 1({1, . . . ,m}) with
respect to the uniform measure as defined in (1) is a strictly convex function of
p ∈ Rm

>0.
▶ When p is constrained by a family of convex constraints, finding the maximum

entropy distribution is a convex program:

minimise:
m∑
i=1

pi logpi

with respect to: p ∈ Rm

subject to: p ≥ 0
p · (1, . . . , 1) = 1
φi(p) ≤ 0 for i = 1, . . . ,n,

for given convex functions φ1, . . . , φn : R
m → R.

▶ An explicit formula for the maximum entropy distribution is rarely available, but in
this situation we can quickly and reliably compute it. 17/72



Problems with Maximum Entropy

▶ Entropy is really relative entropy (Kullback–Leibler divergence) with respect to
uniform measure. Why privilege this measure? What about settings that don’t admit
a uniform reference measure?

▶ Not all classes of probability measures contain maximum entropy distributions:
▶ The class of all absolutely continuous µ ∈ M 1(R) with mean 0 but arbitrary variance

contains distributions of arbitrarily large entropy.
▶ The class of all absolutely continuous µ ∈ M 1(R) with mean 0 and second and third

moments equal to 1 has etropy bounded above but there is no distribution which
attains the maximal entropy.

▶ The MaxEnt Principle is an application-blind selection mechanism. It asserts that
the correct course of action is to select a single representative µME ∈ A and to
make the approximation Q(µ†) ≈ Q(µME) regardless of what Q is.

▶ MaxEnt distributions are atypically smooth and light-tailed, as the next exercise
illustrates, whereas many important applications involve distributions that have
heavy tails.
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The Distributional Robustness Challenge

▶ We are interested in the value Q(µ†) of some quantity of interest that is a functional
of a partially-known probability measure µ† on a space X , and that µ† is known only
to lie in some subset A ⊆ M 1(X ).

▶ In the absence of any further information about which µ ∈ A are more or less likely
to be µ†, and particularly if the consequences of planning based on an inaccurate
estimate of Q(µ†) are very high, it makes sense to adopt a posture of ‘healthy
conservatism’ and compute bounds on Q(µ†) that are as tight as justified by the
information that µ† ∈ A , but no tighter, i.e. to find

Q(A ) := inf
µ∈A

Q(µ) and Q(A ) := sup
µ∈A

Q(µ).

▶ The challenge is computing Q(A ) and Q(A )!
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Distributional Robustness with Finite Sample Spaces

▶ Suppose that the sample space X = {1, . . . , K} is a finite set equipped with the
discrete topology.

▶ The space of measurable functions f : X → R is isomorphic to RK and the space of
probability measures µ on X is isomorphic to the unit simplex in RK; integrating f
against µ is simply taking the Euclidean dot product of the two K-vector
representations.

▶ If the available information on µ† is that it lies in the set

A := {µ ∈ M 1(X ) | Eµ[φn] ≤ cn for n = 1, . . . ,N}

for known measurable functions φ1, . . . , φN : X → R and values c1, . . . , cN ∈ R, then
the problem of finding the extreme values of Eµ[q] among µ ∈ A reduces to linear
programming:
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Distributional Robustness with Finite Sample Spaces

▶ The problem of finding the extreme values of Eµ[q] among µ ∈ A reduces to linear
programming:

extremise: p · q
with respect to: p ∈ RK

subject to: p ≥ 0
p · 1 = 1
p · φn ≤ cn for n = 1, . . . ,N.

▶ Note that the feasible set A for this problem is a convex subset of RK; indeed, A is
a polytope, i.e. the intersection of finitely many closed half-spaces of RK.

▶ Furthermore, as a closed subset of the probability simplex in RK, A is compact.
▶ The extreme values of this linear programming problem are found in the extremal

set ext(A ).
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Distributional Robustness — A Plan of Action

▶ This simple insight, that expectation is linear in the probability measure, and so
extreme values over a class of measures should be found at extreme points, can be
exploited to great effect in the study of distributional robustness problems for
general sample spaces X .

▶ This insight generalises to much more general sample spaces, so long as the
feasible set A of probability measures is ‘sufficiently like a polytope’.

▶ What would appear to be an intractable optimisation problem over an
infinite-dimensional set of measures is in fact equivalent to a tractable
finite-dimensional problem.

▶ Thus, the aim of this section (and in the next two sections) is to find a
finite-dimensional subset A∆ ⊆ A such that

ext
µ∈A

Q(µ) = ext
µ∈A∆

Q(µ).
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▶ The first step is to classify the extremal measures in sets of probability measures
that are prescribed by inequality or equality constraints on the expected value of
finitely many arbitrary measurable test functions, so-called moment classes.

▶ Since, in finite time, we can only test the truth of finitely many inequalities, such
moment classes are appealing from an epistemological point of view because they
conform to the dictum of Karl Popper (1963) that “Our knowledge can be only finite,
while our ignorance must necessarily be infinite.”

Definition
A Borel measure µ on a topological space X is called inner regular if, for every
Borel-measurable set E ⊆ X ,

µ(E) = sup{µ(K) | K ⊆ E and K is compact}.

A pseudo-Radon space is a topological space on which every Borel probability measure
is inner regular. A Radon space is a separable, metrisable, pseudo-Radon space.
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Example

▶ Lebesgue measure (n-dimensional volume) on Euclidean space Rn (restricted to
the Borel σ-algebra B (Rn), if pedantry is the order of the day) is an inner regular
measure. Similarly, Gaussian measure is inner regular.

▶ Indeed, every Polish space (i.e. every separable and completely metrisable
topological space) is a pseudo-Radon space. Thus, almost all of the spaces that one
meets in ‘practical’ discussions — compact rectangular boxes in Rn, the whole of
Rn, separable Banach and Hilbert spaces of functions — are suitable for the UQ
theory that we are building here.

▶ However, there are some special cases where the inner regularity assumptions fail.
For example, Lebesgue/Gaussian measures on R equipped with the topology of
one-sided convergence are not inner regular measures.
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Centres of Mass for Convex Sets of Measures

Compare the following definition of a barycentre (a centre of mass) for a set of
probability measures with the conclusion of the Choquet–Bishop–de Leeuw theorem:

Definition
A barycentre for a convex set A ⊆ M 1(X ) is a probability measure µ ∈ M 1(X ) such
that there exists p ∈ M 1(ext(A )) such that

µ(B) =
∫
ext(A )

ν(B)dp(ν) for all measurable B ⊆ X . (2)

The measure p is said to represent the barycentre µ.
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Infinite-Dimensional Simplices

▶ Recall that a d-dimensional simplex is the closed convex hull of d+ 1 points
p0, . . . ,dd such that p1 − p0, . . . ,pd − p0 are linearly independent.

▶ The right infinite-dimensional analogue for distributional robustness is a Choquet
simplex in M±(X ).

▶ There is a cumbersome definition using orderings and cones on vector spaces, but
there is a convenient alternative definition that is much more amenable to visual
intuition, and more easily checked in practice:

Definition
A homothety of a real topological vector spaceV is the composition of a positive
dilation with a translation, i.e. a function f : V →V of the form f(x) = αx+ v, for fixed
α > 0 and v ∈V .
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Infinite-Dimensional Simplices

Theorem (Choquet–Kendall)

A convex subset S of a topological vector spaceV is a Choquet simplex if and only if
the intersection of any two homothetic images of S is empty, a single point, or another
homothetic image of S.

A triangle is indeed a simplex. Not a simplex, by Choquet–Kendall.
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Theorem (Winkler, 1988)

Let (X ,F ) be a measurable space and let S ⊆ M 1(F ) be a Choquet simplex such that
ext(S) consists of Dirac measures. Fix measurable functions φ1, . . . , φN : X → R and
c1, . . . , cN ∈ R and let

A :=

{
µ ∈ S

∣∣∣∣∣ for n = 1, . . . ,N,
φn ∈ L1(X , µ) and Eµ[φn] ≤ cn

}
.

Then A is convex and its extremal set satisfies

ext(A ) ⊆ A∆ :=

µ ∈ A

∣∣∣∣∣∣∣
µ =

∑m
i=1 wiδxi , 1 ≤ m ≤ N+ 1, and

the vectors (φ1(xi), . . . , φN(xi), 1)mi=1
are linearly independent

 ;

Furthermore, if all the moment conditions defining A are equalities Eµ[φn] = cn
instead of inequalities Eµ[φn] ≤ cn, then ext(A ) = A∆.
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The important point for us is that, when X is pseudo-Radon, Winkler’s theorem applies
to S = M 1(X ), so ext(A ) ⊆ A ∩∆N(X ), where

∆N(X ) :=

µ =
N∑
i=0

wiδxi ∈ M 1(X )

∣∣∣∣∣∣∣
w0, . . . ,wN ≥ 0,

w0 + · · ·+ wN = 1,
x0, . . . , xN ∈ X


denotes convex combinations of ≤ N+ 1 unit Dirac measures on X .

qP

qP

qP

δx1

δx2

δx3

A = M 1(X )

qP ∈ ext(A ) ⊆ A ∩∆0

⊂ M±(X )

Figure 1: Heuristic justification of Winkler’s theorem. Observe that the extreme points of the
moment class A consist of convex combinations of at most 1+ the number of constraints
defining A point masses. 30/72
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Attainment of Extreme Values at Extreme Points i

Having understood the extreme points of moment classes, the next step is to show that
the optimisation of suitably nice functionals on such classes can be exactly reduced to
optimisation over the extremal measures in the class.

Definition

For A ⊆ M 1(X ), a function F : A → R ∪ {±∞} is said to be measure affine if, for all
barycentres µ ∈ A represented by p ∈ M 1(ext(A)), F is p-integrable with

F(µ) =
∫
ext(A )

F(ν)dp(ν). (3)
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Attainment of Extreme Values at Extreme Points ii

An important and simple example of a measure affine functional is an evaluation
functional, i.e. the integration of a fixed measurable function q:

Lemma

If q is bounded either below or above, then µ 7→ Eµ[q] is a measure affine map.

Theorem

Let A ⊆ M 1(X ) be convex and let F be a measure affine function on A . Then F has the
same extreme values on A and ext(A ).
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In summary, we now have the following:

Theorem (Reduction for measures)

Let X be a pseudo-Radon space and let A ⊆ M 1(X ) be a moment class:

A := {µ ∈ M 1(X ) | Eµ[φn] ≤ 0 for n = 1, . . . ,N}

for prescribed measurable functions φn : X → R. Then the extreme points of A are

ext(A ) ⊆ A∆ := A ∩∆N(X )

=

µ ∈ M 1(A )

∣∣∣∣∣∣∣∣∣
for some w0, . . . ,wN ∈ [0, 1], x0, . . . , xN ∈ X ,

µ =
∑N

i=0 wiδxi∑N
i=0 wi = 1,

and
∑N

i=0 wiφn(xi) ≤ 0 for n = 1, . . . ,N

 .

If q is bounded either below or above, then Q(A ) = Q(A∆) and Q(A ) = Q(A∆).
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▶ The Reduction Theorem is good news from a computational standpoint for two
reasons:
▶ Since any feasible measure in A∆ is completely described by N+ 1 scalars and N+ 1

points of X , the reduced set of feasible measures is a finite-dimensional object — or,
at least, it is as finite-dimensional as the space X is — and so it can in principle be
explored using the finite-dimensional numerical optimisation techniques that can be
implemented on a computer.

▶ Furthermore, since the probability measures in A∆ are finite sums of Dirac measures,
expectations against such measures can be performed exactly using finite sums —
there is no quadrature error.

▶ That said, when µ ∈ A∆ has # supp(µ) ≫ 1, as may be the case with problems
exhibiting independence structure like those considered below, it may be cheaper
to integrate against a discrete measure µ =

∑N
i=0 αiδxi ∈ A∆ in a Monte Carlo

fashion, by drawing some number 1 ≪ M ≪ # supp(µ) of independent samples
from µ (i.e. xi with probability αi).
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In general, the optimisation problems over A∆ in the Reduction Theorem can only be
solved approximately, using the tools of numerical global optimisation. However, some
of the classical inequalities of basic probability theory can be obtained in closed form
by this approach.
Example (Markov’s inequality)

Suppose that X is a non-negative real-valued random variable with mean E[X] ≤ m > 0.
Given t ≥ m, what is the least upper bound on P[X ≥ t]?

To answer this question, observe that the given information says that the distribution
µ† of X is some (and could be any!) element of A , where

A :=
{
µ ∈ M 1([0,∞))

∣∣EX∼µ[X] ≤ m
}
.

This A is a moment class with a single moment constraint. By the Reduction Theorem,
the least upper bound on PX∼µ[X ≥ t] among µ ∈ A can be found by restricting
attention to the set A∆ of probability measures with support on at most two points
0 ≤ x0 ≤ x1 < ∞, with masses w0,w1 respectively.
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Example (Markov’s inequality)

▶ In order to satisfy the mean constraint that E[X] ≤ m, we must have x0 ≤ m.
▶ If x1 > t and the mean constraint is satisfied, then moving the mass w1 at x1 to

x′1 := t does not decrease the objective function value PX∼µ[X ≥ t] and the mean
constraint is still satisfied. Therefore, it is sufficient to consider two-point
distributions with x1 = t.

▶ By similar reasoning, it is sufficient to consider two-point distributions with x0 = 0.
▶ Finally, suppose that x0 = 0, x1 = t, but that

EX∼µ[X] = w0x0 + w1x1 = w1t < m.

Then we may change the masses to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Example (Markov’s inequality)

▶ If EX∼µ[X] < m, change masses to

w′
1 := m/t > w1,

w′
0 := 1−m/t < w0,

keeping the positions fixed, thereby increasing the objective function value
PX∼µ[X ≥ t] while still satisfying the mean constraint.

▶ Putting together the above observations yields that

sup
µ∈A

PX∼µ[X ≥ t] = m
t ,

with the maximum being attained by the two-point distribution(
1− m

t

)
δ0 +

m
t δt.

This result is exactly Markov’s inequality from basic probability theory.
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A Missing Link — Independence

▶ The kinds of constraints on measures (or, if you prefer, random variables) that can
be considered in the Reduction Theorem include values for, or bounds on, functions
of one or more of those random variables: e.g. the mean of X1, the variance of X2,
the covariance of X3 and X4, and so on.

▶ However, one commonly encountered piece of information that is not of this type is
that X5 and X6 are independent random variables, i.e. that their joint distibution is a
product measure.

▶ The problem here is that sets of product measures can fail to be convex, so the
reduction to extreme points cannot be applied directly.
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A Missing Link — Independence

▶ For measures µ1 on X 1 and µ2 on X 2, µ1 ⊗ µ2 denotes their product, which is the
measure on X 1 × X 2 defined by

(µ1 ⊗ µ2)(E1 × E2) := µ1(E1)µ2(E2)

i.e. the measure of a ‘rectangle’ is the product of the measures of its ‘sides’.
▶ This formula is then extended to non-rectangular subsets of X 1 × X 2 by σ-additivity.

Exercise
Let λ denote uniform measure on the unit interval [0, 1] ⊊ R. Show that the line
segment in M 1([0, 1]2) joining the measures λ⊗ δ0 and δ0 ⊗ λ contains measures that
are not product measures. Hence show that a set A of product probability measures is
typically not convex.
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Fubini to the Rescue

▶ Fortunately, a cunning application of Fubini’s theorem resolves this non-convexity
difficulty.

▶ Fubini’s theorem says that integration (expectation) against a product measure can
be performed as an iterated integral:

E(X1,X2)∼µ1⊗µ2 [f(X1, X2)] = EX1∼µ1

[
EX2∼µ2 [f(X1, X2)]

]
= EX2∼µ2

[
EX1∼µ1 [f(X1, X2)]

]
,

at least for integrands f : X 1 × X 2 → R that are measurable and bounded either
below or above.

▶ Using Fubini’s theorem, we can extend the Reduction Theorem to cope with
independence constraints coupled with moment constraints on the marginal and
joint distributions.

▶ N.B.: unlike the previous Reduction Theorem, we do not now say that A∆ = ext(A ),
only that the optimisation problem has the same extreme values over A∆ and A .
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Theorem (Reduction for product measures)

Let A ⊆ M 1(X ) be a moment class of the form

A :=

µ =
K⊗

k=1
µk ∈

K⊗
k=1

M 1(X k)

∣∣∣∣∣∣∣∣∣∣
Eµ[φn] ≤ 0 for n = 1, . . . ,N,

Eµ1 [φ1,n] ≤ 0 for n = 1, . . . ,N1,
...

EµK [φK,n] ≤ 0 for n = 1, . . . ,NK


for prescribed measurable functions φn : X → R and φk,n : X k → R. Let

A∆ :=
{
µ ∈ A

∣∣µk ∈ ∆N+Nk(X k)
}
.

Then, if q is bounded either above or below, Q(A ) = Q(A∆) and Q(A ) = Q(A∆).
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Analogy with Multilinear Optimisation

A

+∞

−∞

A y∗

A x∗

qP

Figure 2: Optimisation of a bilinear form B over a non-convex set A ⊆ R2 that has convex
cross-sections. The black curves show contours of B(x, y) = xy. Note that the maximum value of
B over A is found at a point (x∗, y∗) such that x∗ and y∗ are both extreme points of the
corresponding sections A y∗ and A x∗ respectively.
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Example
The essential features of the Reduction Theorem for Independence are captured by
optimising bilinear form on R2 over a set A ⊆ R2 with convex cross-sections, i.e. such
that the sections

A x = {y ∈ R | (x, y) ∈ A }, and
A y = {x ∈ R | (x, y) ∈ A }

are convex sets for each x, y ∈ R. Let B : R ×R → R be a bilinear functional: for
definiteness, consider B(x, y) = xy. Since A is not convex, its extremal set is undefined,
so it does not even make sense to claim that B has the same extreme values on A and
ext(A ). However, the extreme values of B over A are found at points (x∗, y∗) for which
x∗ ∈ ext(A y∗) and y∗ ∈ ext(A x∗). Just as in the Fubini argument in the proof of
Reduction Theorem for Independence, the optimal point can be found by either
maximising maxx∈A y B(x, y) with respect to y, or maximising maxy∈A x B(x, y) with respect
to x.
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▶ In the Reduction Theorem for Independence, a measure µ ∈ A∆ is of the form

µ =
K⊗

k=1

N+Nk∑
ik=0

wk,ikδxk,ik
=

(N+N1,...,N+NK)∑
i=(0,...,0)

wiδxi

where, for a multi-index i ∈ {0, . . . ,N+ N1} × · · · × {0, . . . ,N+ NK},

wi := w1,i1w2,i2 . . .wK,iK ≥ 0,
xi :=

(
x1,i1 , . . . xK,iK

)
∈ X .

Note that this means that the support of µ is a rectangular grid in X .
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▶ As noted earlier, the support of a discrete measure µ ∈ A∆, while finite, can be very
large when K is large: the upper bound is

# supp(µ) =
K∏

k=1
(1+ N+ Nk).

In such cases, it is usually necessary to sacrifice exact integration against µ for the
sake of computational cost and resort to Monte Carlo averages against µ.

▶ However, it is often found in practice that the µ∗ ∈ A∆ that extremises Q(µ∗) does
not have support on as many distinct points of X as the Reduction Theorem for
Independence permits as an upper bound, and that not all of the constraints
determining A hold as equalities.

▶ There are often many inactive and non-binding constraints, and only those that are
active and binding truly carry information about the extreme values of Q.
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Seismic Safety Example (Owhadi et al., 2013)

▶ Consider the survivability of a truss structure under an
random earthquake of known intensity drawn from an
incompletely specified probability distribution.

▶ Extending the commonly-used shape function
technique, consider a random ground motion u, with
the constraint that the mean power spectrum is the
Matsuda–Asano shape function sMA:

Eu∼µ

[
|û(ω)|2

]
= sMA(ω) ∝

ω2
gω

2eML

(ω2
g − ω2)2 + 4ξ2gω2

gω
2 .

▶ We used 200 3d Fourier modes, leading to a
1200-dimensional OUQ problem.
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Seismic Safety Example (Owhadi et al., 2013)

ω

|û(ω)|2

sMA(ω) = Eu∼µ

[
|û(ω)|2

]

Figure 3: One mean constraint on each independent random Fourier mode û(ω) (i.e. that
Eu∼µ

[
|û(ω)|2

]
= sMA(ω)) =⇒ we get to pretend that u(ω) takes at most two distinct values which

together satisfy this mean constraint.
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Seismic Safety Example (Owhadi et al., 2013)
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Seismic Safety Example (Owhadi et al., 2013)
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Seismic Safety Example (Owhadi et al., 2013)
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Seismic Safety Example (Owhadi et al., 2013)

min and max
probability
of failure
over AMA

Richter magnitude, ML
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Figure 4: The minimum and maximum probability of failure as a function of Richter magnitude,
ML, where the ground motion u is constrained to have Eµ[|û|2] = the Matsuda–Asano shape
function sMA with natural frequency ωg and natural damping ξg taken from the 24 Jan. 1980
Livermore earthquake. Each data point required ≈ 1 day on 44+44 AMD Opterons (shc and foxtrot
at Caltech). The forward model used 200 Fourier modes for a 3-dimensional ground motion u.
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Uncertain Response Functions

▶ Applications often feature epistemic uncertainty about the functions involved. For
example, if the system of interest is in reality some function g† from a space X of
inputs to another space Y of outputs, it may only be known that g† lies in some
subsetG of the set of all (measurable) functions from X to Y ; furthermore, our
information about g† and our information about µ† may be coupled in some way,
e.g. by knowledge of EX∼µ† [g†(X)].

▶ Therefore, we now consider admissible sets of the form

A ⊆

{
(g, µ)

∣∣∣∣∣ g : X → Y is measurable
and µ ∈ M 1(X )

}
,

quantities of interest of the form Q(g, µ) = EX∼µ[q(X,g(X))], and seek the extreme
values

Q(A ) := inf
(g,µ)∈A

EX∼µ[q(X,g(X))] and Q(A ) := sup
(g,µ)∈A

EX∼µ[q(X,g(X))].
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▶ If for each g : X → Y the set of µ ∈ M 1(X ) such that (g, µ) ∈ A is a moment class
of the form considered in the Reduction Theorem for Independence, then

ext
(g,µ)∈A

EX∼µ[q(X,g(X))] = ext
(g,µ)∈A

µ∈
⊗K

k=1 ∆N+Nk (X k)

EX∼µ[q(X,g(X))].

▶ The passage to discrete measures µ often enables us to finite-dimensionalise the
search over g, because only the values of g on the finite set supp(µ) ‘matter’ in
computing EX∼µ[q(X,g(X))].

▶ Instead of optimising with respect to g ∈G , we optimise with respect to the
finite-dimensional vector y = g|supp(µ). However, this reduction step requires some
care:
▶ Some ‘functions’ do not have their values defined pointwise, e.g. ‘functions’ in

Lebesgue and Sobolev spaces, which are actually equivalence classes of functions
modulo equality Lebesgue-almost everywhere. It makes no sense to restrict such
‘functions’ to a finite set supp(µ). We have to insist thatG is a space of functions with
pointwise-defined values.

▶ Conversely, it is sometimes difficult to verify whether a vector y is g|supp(µ) for some
g ∈G ; we need functions that can be extended from supp(µ) to all of X .
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Extending Partially-Defined Functions

Theorem (Minty, 1970)

Let (X ,d) be a metric space, let H be a Hilbert space, let E ⊆ X , and suppose that
f : E → H is α-Hölder on E for some 0 < α ≤ 1:

∥f(x)− f(y)∥H ≤ d(x, y)α for all x, y ∈ E. (4)

Then there exists F : X → H such that F|E = f and (4) holds for all x, y ∈ X if either
α ≤ 1

2 or if X is an inner product space with metric given by d(x, y) = k1/α∥x− y∥ for
some k > 0. Furthermore, the extension can be performed without increasing the
Hölder norm

∥f∥C 0,α := sup
x

∥f(x)∥H + sup
x ̸=y

∥f(x)− f(y)∥H

d(x, y)α ,

where the suprema are taken over E or X as appropriate.
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Extending Partially-Defined Functions

▶ Minty’s extension theorem includes as special cases
▶ the Kirszbraun–Valentine theorem, which assures that Lipschitz functions between

Hilbert spaces can be extended without increasing the Lipschitz constant, and
▶ McShane’s theorem, which assures that scalar-valued continuous functions on metric

spaces can be extended without increasing a prescribed convex modulus of continuity.

▶ However, the extensibility property fails for Lipschitz functions between Banach
spaces, even finite-dimensional ones!
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Example

Let E := {(1,−1), (−1, 1), (1, 1)} ⊆ R2 and define f : E → R2 by

f((1,−1)) := (1, 0), f((−1, 1)) := (−1, 0), and f((1, 1)) := (0,
√
3).

Suppose that we wish to extend this f to F : R2 → R2, where E and the domain copy of
R2 are given the metric arising from the maximum norm ∥ · ∥∞ and the range copy of R2

is given the metric arising from the Euclidean norm ∥ · ∥2. Then, for all distinct x, y ∈ E,

∥x− y∥∞ = 2 = ∥f(x)− f(y)∥2,

so f has Lipschitz constant 1 on E. What value should F take at the origin, (0, 0), if it is
to have Lipschitz constant at most 1? Since (0, 0) lies at ∥·∥∞-distance 1 from all three
points of E, F((0, 0)) must lie within ∥·∥2-distance 1 of all three points of f(E). . . . . . . . .
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Example

However, there is no such point of R2 within distance 1 of all three points of f(E), and
hence any extension of f to F : R2 → R2 must have Lip(F) > 1; indeed, any such F must
have Lip(F) ≥ 2√

3 .

b

b b

1−1
−1

1

(R2, ∥·∥∞)

f

bb

b

1 2−1−2
−1

1

2

3
(R2, ∥·∥2)

Figure 5: The function f that takes the three points on the left (equipped with ∥·∥∞) to the three
points on the right (equipped with ∥·∥2) has Lip(f) = 1, but has no 1-Lipschitz extension F to
(0, 0), let alone the whole plane R2, since F((0, 0)) would have to lie in the (empty) intersection
of the three discs.
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Theorem (Reduction for measures and functions)

LetG be a collection of measurable functions from X to Y such that, for every finite
subset E ⊆ X and g : E → Y , it is possible to determine whether or not g can be
extended to an element ofG . Let A ⊆G ×M 1(X ) be such that, for each g ∈G , the set
Ag = {µ ∈ M 1(X ) | (g, µ) ∈ A } is a moment class of the form considered in the
Reduction Theorem for Independence. Let

A∆ :=

(y, µ)

∣∣∣∣∣∣∣
µ ∈

⊗K
k=1∆N+Nk(X k),

y is the restriction to supp(µ) of some g ∈G ,
and (g, µ) ∈ A

 .

Then, if q is bounded either above or below, Q(A ) = Q(A∆) and Q(A ) = Q(A∆).
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Smoothness and Legacy Data Constraints

Example
Suppose that g† : [0, 1] → R is known to have Lipschitz constant Lip(g†) ≤ L. Suppose
also that the inputs of g† are distributed according to µ† ∈ M 1([0, 1]), and it is known
that

EX∼µ† [g†(X)] ≥ m > 0

and g† is known on O ⊂ [0, 1]. Hence, the corresponding feasible set is

A =

(g, µ)

∣∣∣∣∣∣∣
g : [0, 1] → R has Lipschitz constant ≤ L,

g(z) = g†(z) for each z ∈ O ,
µ ∈ M 1([0, 1]), and EX∼µ[g(X)] ≥ m

 .

Suppose that our quantity of interest is the probability of output values below 0,
i.e. q(x, y) = 1[y ≤ 0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Smoothness and Legacy Data Constraints

Example
By the Reduction Theorem for Independence, extremes of Q(g, µ) := PX∼µ[g(X) ≤ 0] are
solutions of

extremise:
1∑

i=0
wi1[yi ≤ 0];

w.r.t.: w0,w1 ≥ 0,
x0, x1 ∈ [0, 1],
y0, y1 ∈ R;

subject to:
1∑

i=0
wi = 1, |yi − yj| ≤ L|xi − xj| for i, j ∈ {0, 1},

1∑
i=0

wiyi ≥ m, |yi − g†(z)| ≤ L|xi − z| for i ∈ {0, 1}, z ∈ O .
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Smoothness and Legacy Data Constraints

The original problem entails optimizing over an infinite-dimensional collection of (g, µ)
that could be (g†, µ†). In the reduced problem, we only have to move around and
re-weight two Dirac measures (point masses) and the values of g over those two points.

infinite-dimensional problem⇝ equivalent 5-dimensional problem!

b

b

b

m

µ = a possible µ†

g = a possible g†

(g, µ) ∈ A

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓
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Explicit Solution: 1 Mean Constraint, 1 Data Point

▶ The case of a single observation in 1d can be solved explicitly.
▶ Suppose that you have one observation (z,g†(z)) ∈ [0, 12 ]×R of a function

g† : [0, 1] → R with Lipschitz constant L ≥ 0.
▶ Explicit piecewise and discontinuous least upper bound on PX∼µ† [g†(X) ≤ 0] given L,

(z,g†(z)), and that EX∼µ† [g†(X)] ≥ m:

Figure 6: Surface plot of the least upper bound P on Pµ† [g† ≤ 0], as a function of the observed
data point (z,g†(z)).
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Smoothness and Legacy Data Constraints

The previous example generalises to product measures on inputs, and generic legacy
evaluations of g† on some observation set O ⊂ X . What does this feasible set ‘look like’,
e.g. in the 2× 2× . . . case?

b

data point/
observation
(z,g†(z))

b b

b

bC bC

bC bC

bC bC

bC bC

x000 x100

x001
x011

x110

x111

µ
Y

X
bC bC bC bC bC bC bC bC

bC

bC
bC

bC
bC

bC bC
bC

(x010, y010), with probability mass w1 · (1− w2) · w3

Figure 7: The black dots are the fixed locations of the legacy observations g†|O . With one
mean-value constraint, the grey dots are the movable locations of the 2K support points xi,
i ∈ {0, 1}K, of the discrete product measure µ = µ1 ⊗ · · · ⊗ µK on X . The white dots show some
feasible values (xi, yi). The marginal distribution µk on X k assigns mass wk to xk0 and mass 1− wk
to xk1 .
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Hypervelocity Impact Example (Sullivan et al., 2013)

▶ Legacy data = 32 data points (steel-on-aluminium shots A48–A81, less two mis-fires)
from summer 2010 at Caltech’s SPHIR facility:

X = (h, α, v) ∈ X := [0.062, 0.125] in× [0, 30]deg× [2300, 3200]m/s.

Output g†(h, α, v) = the induced perforation area in mm2; the data set contains
results between 6.31mm2 and 15.36mm2.

▶ Failure event is [g†(h, α, v) ≤ θ], for various values of θ.
▶ Constrain the mean perf. area: Eµ† [g†(h, α, v)] ≥ m := 11.0mm2.
▶ Modified Lipschitz constraint (multi-valued data):

L =

(
175.0
in ,

0.075
deg ,

0.1
m/s

)
mm2

|y− y′| ≤
3∑

k=1
Lk|xk − x′k|+ 1.0mm2.
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Hypervelocity Impact Example (Sullivan et al., 2013)
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Figure 8: Maximum probability that perforation area is ≤ θ, for various θ, with the data and
assumptions of the previous slide, including mean perforation area E[g†(h, α, v)] ≥ 11.0mm2. For
θ ≥ 2mm2, the results are within 10−6 of Markov’s bound, which indicates that 2 binding data
points are those that constrain the maximum of the response function; the other 30 are
non-binding.
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McDiarmid’s Inequality (Owhadi et al., 2013)

▶ Consider a bounded function g : X = X 1 × · · · × X K → R.
▶ The kth McDiarmid subdiameter of g (a seminorm):

Dk[g] := sup
{
|g(x)− g(x′)|

∣∣∣∣∣ x, x′ ∈ X

xi = x′i for i ̸= k

}

= sup
{

|g(. . . , xk−1, xk, xk, . . . )
−g(. . . , xk−1, x′k, xk, . . . )|

∣∣∣∣∣ xi ∈ X i for i = 1, . . . , K,
x′k ∈ X k

}
.

▶ McDiarmid’s concentration-of-measure inequality (McDiarmid, 1989) says that if
X = (Xk)Kk=1 has independent components Xk taking values in X k, then

P[g(X) ≤ 0] ≤ exp
(
−2max{0,E[g(X)]}2∑K

k=1Dk[g]2

)
.
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McDiarmid’s Inequality (Owhadi et al., 2013)

Example (McDiarmid)
Consider the following admissible set of response functions and product measures on
their inputs

AMcD =

(g, µ)

∣∣∣∣∣∣∣
g : X → R has Dk[g] ≤ Dk,
µ =

⊗K
k=1 µk ∈ M 1(X ),

and EX∼µ[g(X)] = m

 .

Let m+ := max{0,m}. This AMcD is the admissible set corresponding to the
assumptions of McDiarmid’s inequality, which is the upper bound

Q(AMcD) := sup
(g,µ)∈AMcD

Pµ[g(X) ≤ 0] ≤ exp
(
−

2m2
+∑K

k=1 D2
k

)
.
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McDiarmid’s Inequality (Owhadi et al., 2013)

Example (McDiarmid)
McDiarmid’s inequality is not the least upper bound on Pµ[g(X) ≤ 0]; the actual least
upper bound can be calculated using the reduction theorems.

▶ For K = 1,

Q(AMcD) =

0, if D1 ≤ m+,
1− m+

D1
, if 0 ≤ m+ ≤ D1.
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McDiarmid’s Inequality (Owhadi et al., 2013)

Example (McDiarmid)
McDiarmid’s inequality is not the least upper bound on Pµ[g(X) ≤ 0]; the actual least
upper bound can be calculated using the reduction theorems.

▶ For K = 2,

Q(AMcD) =


0, if D1 + D2 ≤ m+,
(D1+D2−m+)2

4D1D2
, if |D1 − D2| ≤ m+ ≤ D1 + D2,

1− m+

max{D1,D2} , if 0 ≤ m+ ≤ |D1 − D2|.

In the third case, min{D1,D2} does not contribute to the least upper bound on
Pµ[g(X) ≤ 0]. In other words, if most of the uncertainty is contained in the first
variable (i.e. m+ + D2 ≤ D1), then the inequality D2[g] ≤ D2 is non-binding
information and does not affect the global uncertainty.
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McDiarmid’s Inequality (Owhadi et al., 2013)

Example (McDiarmid)

▶ Similar, but more complicated, results are possible for K ≥ 3, and there are similar
‘screening effects’ in which only a few of the diameter constraints supply binding
information to the optimisation problem for Q(AMcD).

▶ It is also possible to show that if we additionally specify that f is linear (Hoeffding’s
inequality), then this is non-binding information in the case K = 2 but is binding
information in the case K ≥ 3.
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Dominant Uncertainties and Screening Effects

▶ The phenomenon observed in the legacy data hypervelocity impact example, and in
the K = 2 solution of the optimal McDiarmid inequality, occurs in many contexts:
not all of the constraints that specify A necessarily hold as binding or active
constraints at the extremizing solution (g∗, µ∗) ∈ A .

▶ The best- and worst-case predictions for the quantity of interest Q(g†, µ†) are
controlled by only a few pieces of input information, and the others have not just
little impact, but none at all!

▶ This phenomenon is actually very useful, since it can be used to direct future
information-gathering activities, such as expensive experimental campaigns, by
attempting to acquire information (and hence pass to a smaller feasible set
A ′ ⊊ A ) that will modify the binding/active constraints for the previous problem,
i.e. invalidate the previous extremiser in A and lead to a new extremiser in A ′.
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▶ The principle of maximum entropy was proposed by Jaynes (1957a,b), appealing to a
correspondence between statistical mechanics and information theory. On the
basis of this principle and Cox’s theorem (Cox, 1946, 1961), Jaynes (2003) developed a
comprehensive viewpoint on probability theory, viewing it as the natural extension
of Aristotelian logic.

▶ The approach of UQ advocated here falls under the umbrella of imprecise
probability, the origins of which date back to very early works on probability like
those of Boole (1854) and Keynes (1921). More recent foundations and expositions
for imprecise probability have been put forward by Walley (1991), Kuznetsov (1991),
Weichselberger (2000), and by Dempster (1967) and Shafer (1976).

▶ Berger (1994) makes the case for distributional robustness, with respect to priors
and likelihoods, in Bayesian inference. Smith (1995) provides theory and several
practical examples for generalised Chebyshev inequalities in decision analysis.
Boyd and Vandenberghe (2004, Section 7.2) cover some aspects of distributional
robustness under the heading of nonparametric distribution estimation, in the case
in which it is a convex problem.
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▶ Convex optimisation approaches to distributional robustness and optimal
probability inequalities are also considered by Bertsimas and Popescu (2005). There
is also an extensive literature on the related topic of majorization, for which see the
book of Marshall et al. (2011).

▶ A standard short reference on Choquet theory is the book of Phelps (2001). The
Choquet–Kendall theorem was proved first by Choquet under the additional
assumption that the simplex is compact; the assumption was later dropped by
Kendall (1962). For linear programming in infinite-dimensional spaces, with careful
attention to what parts of the analysis are purely algebraic and what parts require
topology / order theory, see Anderson and Nash (1987).

▶ The classification of the extreme points of moment sets, and the consequences for
the optimisation of measure affine functionals, are due to von Weizsäcker and
Winkler (1979/80, 1980) and Winkler (1988). Karr (1983) proved similar results under
additional topological and continuity assumptions.
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▶ Theorem 17 and the Lipschitz version of Theorem 21 can be found in Owhadi et al.
(2013) and Sullivan et al. (2013) respectively. Theorem 19 is due to Minty (1970), and
generalises earlier results by McShane (1934), Kirszbraun (1934), and Valentine
(1945). The optimal version of McDiarmid’s inequality is given by Owhadi et al. (2013,
Section 5.1.1).

▶ Applications of the methodology discussed in these notes can be found in various
papers:
▶ applications to hypervelocity impact: Owhadi et al. (2013), Sullivan et al. (2013), and

Kamga et al. (2014);
▶ applications to seismic safety certification: Owhadi et al. (2013);
▶ application to power grid optimisation: Han et al. (2015);
▶ applications to the robustness of Bayesian inference: Owhadi et al. (2015a,b).

▶ Corresponding software can be found in the examples section of the mystic
optimisation framework at

http://github.com/uqfoundation/mystic
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