PROBABILISTIC NUMERICS

Selected Highlights from Working Group II

²Newcastle University, UK ³Free University of Berlin, DE ⁴Zuse Institute Berlin, DE INTRODUCTION

WG II Mission Statement

The accuracy and robustness of numerical predictions that are based on mathematical models depend critically upon the construction of accurate discrete approximations to key quantities of interest. The exact error due to approximation will be unknown to the analyst, but worst-case upper bounds can often be obtained. This working group aims, instead, to develop Probabilistic Numerical Methods, which provide the analyst with a richer, probabilistic quantification of the numerical error in their output, thus providing better tools for reliable statistical inference.

PN ensemble solution of the Lorenz-63 system; convergence rate of the (non-Gaussian!) solution distribution to the exact solution is given by Lie, Stuart, and Sullivan (2017a).

WHY PROBABILISTIC NUMERICS?

- The last 5 years have seen a renewed interest, at various levels of rigour, in probabilistic perspectives on numerical tasks e.g. quadrature, ODE and PDE solution, optimisation.
- A long heritage: Poincaré (1896); Larkin (1970); Diaconis (1988); Skilling (1992).
- There are many ways to motivate this modelling choice:
 - To a statistician's eye, numerical tasks look like inverse problems.
 - Worst-case errors are often too pessimistic perhaps we should adopt an average-case viewpoint (Traub et al., 1988; Ritter, 2000; Trefethen, 2008)?
 - "Big data" problems often require (random) subsampling.
 - If discretisation error is not properly accounted for, then biased and over-confident inferences result (Conrad et al., 2016).
 - Accounting for the impact of discretisation error in a statistical way allows forward and Bayesian inverse problems to speak a common statistical language.
- We think that some concrete definitions and theory-building are needed!
- We also think that concrete *applications* are needed!

WHO HAS TAKEN PART?

$\ensuremath{\mathsf{Members}}^*$ of the Working Group

	Name	Affili	iation	WG Role
1.	Alessandro Barp	ж	Imperial College London, UK	
2.	David Bortz		University of Colorado, US	
3.	François-Xavier Briol	×	University of Warwick, UK and Imperial College London, UK	RG Chair
4.	Ben Calderhead	×	Imperial College London, UK	
5.	Oksana Chkrebtii		Ohio State University, US	
6.	Jon Cockayne	\mathbb{X}	University of Warwick, UK	
7.	Vanja Dukic		University of Colorado, US	
8.	Ruituo Fan		University of North Carolina, US	
9.	Mark Girolami	\mathbb{X}	Imperial College London, UK and the Alan Turing Institute, UK	
10.	Jan Hannig		University of North Carolina, US	
11.	Philipp Hennig		Max Planck Institute, Tübingen, DE	
12.	Fred Hickernell		Illinois Institute of Technology, US	
13.	Toni Karvonen		Aalto University, FI	
14.	Han Cheng Lie		Freie Universität Berlin, DE	RG Chair
15.	Chris Oates	\mathbb{X}	Newcastle University, UK and the Alan Turing Institute, UK	WG Leader
16.	Houman Owhadi		California Institute of Technology, US	
17.	Jagadeeswaran Rathinavel		Illinois Institute of Technology US	
18.	Florian Schäfer	1881 	California Institute of Technology, US	
19.	Andrew Stuart	1881 	California Institute of Technology, US	
20.	Tim Sullivan		Freie Universität Berlin, DE and Zuse Institute Berlin, DE	WG Leader
21.	Onur Teymur	×	Imperial College London, UK	
22.	Junyang Wang	Ж	Newcastle University, UK	

WHAT HAVE WE BEEN UP TO?

Publications acknowledging SAMSI support

	Published									
1.	Briol, Cockayne, Teymur, Yoo, Schober, and Hennig (2016)	SAMSI Optimization 2016–2017								
2.	Dukic and Bortz (2018)									
3.	Oates, Niederer, Lee, Briol, and Girolami (2017b)									
	Submitted and under review									
4.	Cockayne, Oates, Sullivan, and Girolami (2017)	Best Paper Award at JSM 2018								
5.	Lie, Stuart, and Sullivan (2017a)									
6.	Lie and Sullivan (2017)									
7.	Lie, Sullivan, and Teckentrup (2017b)									
8.	Oates, Cockayne, and Ackroyd (2017a)									
9.	Schäfer, Sullivan, and Owhadi (2017)									
10.	Karvonen, Oates, and Särkkä (2018)									
11.	Cockayne, Oates, and Girolami (2018)									
12.	Xi, Briol, and Girolami (2018)									
In preparation										
13.	Chkrebtii (In preparation)									
14.	Hennig, Kersting, and Sullivan (In preparation)									
15.	Rathinavel and Hickernell (In preparation)									

- Teleconference over Skype, later Webex.
- 1 hour session every 1 or 2 weeks.
- 22 presentations by WG members and guests on
 - PN history, e.g. the work of Mike Larkin in the 1970s;
 - Ongoing research on the WG's topics of interest: quadrature, random Bayesian inverse problems, probabilistic linear algebra, information dynamics, ...
- Speaker schedule, technicalities etc. kindly coordinated by François-Xavier Briol (Warwick & Imperial College London) and Han Cheng Lie (Freie Universität Berlin).

SAMSI-Lloyd's-Turing Workshop on PN, 11.-13.04.2018

- Venue: the **Alan Turing Institute**, the UK's national institute for data science, housed in the **British Library**, Euston Road, London
- 34 participants from US, UK, FR, FI, DE, CH
- 17 talks, 4 research sessions, and 1 panel discussion

prob-num.github.io

Generously supported by: The **Alan Turing** Institute Lloyd's Register Foundation samsi

NSF

Duke

NCSU

UNC

"Probabilistic Numerical Methods for Quantification of Discretisation Error"

- 3 × 2-hour minisymposium at SIAM UQ18
- Organisers: Mark Girolami (Imperial & Turing), Philipp Hennig (MPI Tübingen), Chris Oates (Newcastle & Turing), and Tim Sullivan (FU Berlin / ZIB)

SIAM Conference on Uncertainty Quantification

April 16-19, 2018 Hyatt Regency Orange County, Garden Grove, California, USA

MS4 Monday	09:30-11:30	MS17 Mon	day 14:00–16:00	MS32 Tuesday 09:10–11:10	
Sullivan		Kanagawa		Hickernell	
Campbell	$\int u(x) \mathrm{d}x$	Oates	$-\nabla \cdot (\kappa \nabla u) = f$	Briol	$\int u(x) \mathrm{d}x$
Cockayne	Ax = b	Teymur	$\frac{\mathrm{d}}{\mathrm{d}t}u = f(t, u)$	Gessner	$\int u(x) \mathrm{d}x$
Kersting	$\frac{\mathrm{d}}{\mathrm{d}t}u = f(t, u)$	Schäfer	Ax = b	Karvonen	$\int u(x) \mathrm{d}x$

Research Tour I

Cockayne, Oates, Sullivan, and Girolami (2017) arXiv:1702.03673 [*Best Student Paper Award, ASA Section on Bayesian Statistical Science at JSM!]

Goal is to formulate a *Bayesian* approach to traditional "numerical tasks", such as the solution of a differential equation

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(t, u)$$

that enables uncertainty quantification due to space and time discretisation, necessitated by a finite computational budget.

BAYESIAN PROBABILISTIC NUMERICAL METHODS

• Prior: $u \sim \mathbb{P}$

- Prior: $u \sim \mathbb{P}$
- Posterior:

$$\mathbb{P}_n : \lim_{\epsilon \downarrow 0} \frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_0}$$

where

$$\frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_{0}} = \exp\left(-\frac{1}{\epsilon}\sum_{i=1}^{n}\left|\frac{\mathrm{d}u}{\mathrm{d}t}(t_{i},x_{i}) - f(t_{i},x_{i})\right|^{2}\right)$$

- Prior: $u \sim \mathbb{P}$
- Posterior:

$$\mathbb{P}_n : \lim_{\epsilon \downarrow 0} \frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_0}$$

where

$$\frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_{0}} = \exp\left(-\frac{1}{\epsilon}\sum_{i=1}^{n}\left|\frac{\mathrm{d}u}{\mathrm{d}t}(t_{i},x_{i}) - f(t_{i},x_{i})\right|^{2}\right)$$

Relationship to average case analysis and optimal algorithms?

BAYESIAN PROBABILISTIC NUMERICAL METHODS

- Prior: $u \sim \mathbb{P}$
- Posterior:

$$\mathbb{P}_n : \lim_{\epsilon \downarrow 0} \frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_0}$$

where

$$\frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_{0}} = \exp\left(-\frac{1}{\epsilon}\|\boldsymbol{A}(u) - a\|^{2}\right) \qquad \text{how to design } \boldsymbol{A}?$$

Relationship to average case analysis and optimal algorithms?

- Prior: $u \sim \mathbb{P}$
- Posterior:

$$\mathbb{P}_n : \lim_{\epsilon \downarrow 0} \frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_0}$$

where

$$\frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_{0}} = \exp\left(-\frac{1}{\epsilon}\|\boldsymbol{A}(u) - a\|^{2}\right) \qquad \text{how to design } \boldsymbol{A}?$$

- Relationship to average case analysis and optimal algorithms?
- Design criterion:

$$\underset{A \in \mathcal{A}}{\operatorname{arg\,min}} \int \underbrace{d}_{\text{e.g. Wasserstein}} \left(\delta(u^{\dagger}), \mathbb{P}_{n} \right) d\mathbb{P}(u^{\dagger})$$

is in general distinct to average case analysis!

- Prior: $u \sim \mathbb{P}$
- Posterior:

$$\mathbb{P}_n : \lim_{\epsilon \downarrow 0} \frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_0}$$

where

$$\frac{\mathrm{d}\mathbb{P}_{\epsilon}}{\mathrm{d}\mathbb{P}_{0}} = \exp\left(-\frac{1}{\epsilon}\|\boldsymbol{A}(u) - a\|^{2}\right) \qquad \text{how to design } \boldsymbol{A}?$$

- Relationship to average case analysis and optimal algorithms?
- Design criterion:

$$\underset{A \in \mathcal{A}}{\operatorname{arg\,min}} \int \underbrace{d}_{\text{e.g. Wasserstein}} \left(\delta(u^{\dagger}), \mathbb{P}_{n} \right) d\mathbb{P}(u^{\dagger})$$

is in general distinct to average case analysis!

Closure under composition (see next project...)

Oates, Cockayne, and Ackroyd (2017a) arXiv:1707.06107

Goal is to perform Bayesian uncertainty quantification for the time-dependent conductivity field a(x;t) s.t.

$$\nabla \cdot (a\nabla u) = 0 \quad \text{in } D$$
$$\int_{E_i} a\nabla u \cdot \mathbf{n} \, \mathrm{d}\sigma = I_i$$
$$u + \zeta_i a\nabla u \cdot \mathbf{n} = U_i \quad \text{on } E_i$$
$$a\nabla u \cdot \mathbf{n} = 0 \quad \text{on } \partial D \setminus \bigcup_{i=1}^m E_i$$

based on noisy observations of $U_i(t)$ whilst propagating uncertainty due to discretisation of the PDE.

• The hydrocyclone operates at a high velocity, so this demands coarse discretisation of the PDE.

- The hydrocyclone operates at a high velocity, so this demands coarse discretisation of the PDE.
- Exploits closure of Bayesian PNM under composition!

- The hydrocyclone operates at a high velocity, so this demands coarse discretisation of the PDE.
- Exploits closure of Bayesian PNM under composition!
- Better reflection of uncertainty on the unknown field.

Dukic and Bortz (2018) Inv. Probl. Sci. Engrng. 28(2):223-232

Goal is to perform Bayesian uncertainty quantification for the solution to an epidemiological model

$$S(t) = -\beta S(t)I(t)$$
$$I(t) = \beta S(t)I(t) - \gamma I(t)$$
$$R(t) = \gamma I(t)$$

that captures uncertainty due to finite computational budget.

Cockayne, Oates, and Girolami (2018) arXiv:1801.05242

Goal is to perform Bayesian uncertainty quantification for the solution $\mathbf{x} \in \mathbb{R}^N$ to a linear system

Ax = b

where only $n \ll N$ vector-matrix multiplications can be performed.

See Jon Cockayne's talk!

Rathinavel and Hickernell (In preparation)

Goal is to perform Bayesian uncertainty quantification for an integral

 $\int f(x) \, \mathrm{d}\mu(x)$

where

- *f*(*x*) is expensive to evaluate
- uncertainty estimates should be "well-calibrated"
- computational overhead should be $O(n \log n)$

• Fix a tolerance $0 < \tau \ll 1$.

- Fix a tolerance $0 < \tau \ll 1$.
- Prior: $f \sim GP(m, k)$ where $m \equiv m_{\theta}$ and $k \equiv k_{\theta}$, $\theta \in \Theta$.

- Fix a tolerance $0 < \tau \ll 1$.
- Prior: $f \sim GP(m, k)$ where $m \equiv m_{\theta}$ and $k \equiv k_{\theta}, \theta \in \Theta$.
- For each n = 1, 2, ...
 - Select

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \operatorname{prob}(f(x_1), \dots, f(x_n)|\theta)$$

- (i.e. empirical Bayes)
- If 99% of the mass of

$$\operatorname{prob}\left(\int f(x) \, \mathrm{d}\mu(x) \, \middle| \, f(x_1), \dots, f(x_n), \hat{\theta}\right)$$

lies in an interval *A* of width τ , then break.

• Return the credible set *A*.

- Fix a tolerance $0 < \tau \ll 1$.
- Prior: $f \sim GP(m, k)$ where $m \equiv m_{\theta}$ and $k \equiv k_{\theta}, \theta \in \Theta$.
- For each n = 1, 2, ...
 - Select

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \operatorname{prob}(f(x_1), \dots, f(x_n)|\theta)$$

- (i.e. empirical Bayes)
- If 99% of the mass of

$$\operatorname{prob}\left(\int f(x) \, \mathrm{d}\mu(x) \, \middle| \, f(x_1), \dots, f(x_n), \hat{\theta}\right)$$

lies in an interval *A* of width τ , then break.

- Return the credible set *A*.
- Efficient computation of evidence at $O(n \log n)$ cost.

Xi, Briol, and Girolami (2018) arXiv:1801.04153

Goal is to perform Bayesian uncertainty quantification for the related integrals

$$\int f_1(x) \, \mathrm{d}x$$

$$\vdots$$

$$\int f_m(x) \, \mathrm{d}x$$

where each $f_i(x)$ is expensive to evaluate.

Bayesian Quadrature for Multiple Related Integrals

Main tool: vector-valued GP/RKHS

Bayesian Quadrature for Multiple Related Integrals

- Main tool: vector-valued GP/RKHS
- Kernels:

$$k((x,i),(y,j)) = k_1(i,j)k_2(x,y)$$

BAYESIAN QUADRATURE FOR MULTIPLE RELATED INTEGRALS

- Main tool: vector-valued GP/RKHS
- Kernels:

$$k((x,i),(y,j)) = k_1(i,j)k_2(x,y)$$

• Interesting applied work around elicitation of *k*₁:

Karvonen et al. (2018) arXiv:1804.03016

Given a cubature rule

$$\hat{\mu}(f) = \sum_{i=1}^{n} w_i f(x_i)$$
$$\approx \int f(x) \, \mathrm{d}\mu(x)$$

can we cast $\hat{\mu}$ as a Bayes rule in a decision-theoretic framework?

• Pick $\phi_i(x)$ such that $\phi_i(x_j) = \delta_{i,j}$ and $\int \phi_i(x) d\mu(x) = \frac{1}{n}$.

- Pick $\phi_i(x)$ such that $\phi_i(x_j) = \delta_{i,j}$ and $\int \phi_i(x) d\mu(x) = \frac{1}{n}$.
- Form a regression model:

$$f(x) = \sum_{i=1}^{n} \beta_i \phi_i(x) + g(x)$$
$$\beta_i \sim \text{Uniform}$$
$$g \sim \text{GP}(0, k)$$

- Pick $\phi_i(x)$ such that $\phi_i(x_j) = \delta_{i,j}$ and $\int \phi_i(x) d\mu(x) = \frac{1}{n}$.
- Form a regression model:

$$f(x) = \sum_{i=1}^{n} \beta_i \phi_i(x) + g(x)$$
$$\beta_i \sim \text{Uniform}$$
$$g \sim \text{GP}(0, k)$$

Then

$$\int f(x) \, \mathrm{d}\mu(x) \left| f(x_1), \dots, f(x_n) \right| \sim \mathrm{N}\left(\hat{\mu}(f), \sigma^2\right)$$

where σ is the worst case error of the cubature rule $\hat{\mu}$ in the RKHS H(k).

- Pick $\phi_i(x)$ such that $\phi_i(x_j) = \delta_{i,j}$ and $\int \phi_i(x) d\mu(x) = \frac{1}{n}$.
- Form a regression model:

$$f(x) = \sum_{i=1}^{n} \beta_i \phi_i(x) + g(x)$$
$$\beta_i \sim \text{Uniform}$$
$$g \sim \text{GP}(0, k)$$

Then

$$\int f(x) \, \mathrm{d}\mu(x) \, \left| f(x_1), \dots, f(x_n) \, \sim \, \mathrm{N}\Big(\hat{\mu}(f), \sigma^2\Big) \right|$$

where σ is the worst case error of the cubature rule $\hat{\mu}$ in the RKHS H(k).

Enables Bayesian uncertainty quantification for QMC?

Oates, Niederer, Lee, Briol, and Girolami (2017b) Advances in Neural Information Processing Systems (NIPS 2017)

Goal is to perform Bayesian uncertainty quantification for the integral

$$\int f(x)p(x)\,\mathrm{d}x$$

where

- *f*(*x*) is expensive to evaluate
- *p*(*x*) can only be sampled
- *p*(*x*) is expensive to sample

Assessment of functional cardiac models is difficult.

- Assessment of functional cardiac models is difficult.
- Prior: $f \sim GP(m,k)$, $p \sim DirichletProcessMixtureModel(\alpha, P_0, \phi(\cdot, \cdot))$ (ϕ a RBF)

- Assessment of functional cardiac models is difficult.
- Prior: $f \sim GP(m,k)$, $p \sim DirichletProcessMixtureModel(\alpha, P_0, \phi(\cdot, \cdot))$ (ϕ a RBF)
- Data: $\{x_i\}_{i=1}^n \sim p(x)$ and $f(x_i) \in \mathbb{R}$

- Assessment of functional cardiac models is difficult.
- Prior: $f \sim GP(m,k)$, $p \sim DirichletProcessMixtureModel(\alpha, P_0, \phi(\cdot, \cdot))$ (ϕ a RBF)
- Data: $\{x_i\}_{i=1}^n \sim p(x)$ and $f(x_i) \in \mathbb{R}$
- Posterior can be sampled:
 - $\tilde{p} \sim \operatorname{Posterior}(p|\{x_1,\ldots,x_n\})$
 - $\tilde{p}(\cdot) = \sum_{i=1}^{\infty} \tilde{w}_i \phi(\cdot, \tilde{x}_i)$
 - $\int k(\cdot, x) d\tilde{p}(x) = \sum_{i=1}^{\infty} \tilde{w}_i \int k(\cdot, x) \phi(x, \tilde{x}_i) dx$

- Assessment of functional cardiac models is difficult.
- Prior: $f \sim GP(m,k)$, $p \sim DirichletProcessMixtureModel(\alpha, P_0, \phi(\cdot, \cdot))$ (ϕ a RBF)
- Data: $\{x_i\}_{i=1}^n \sim p(x)$ and $f(x_i) \in \mathbb{R}$
- Posterior can be sampled:
 - $\tilde{p} \sim \operatorname{Posterior}(p|\{x_1,\ldots,x_n\})$
 - $\tilde{p}(\cdot) = \sum_{i=1}^{\infty} \tilde{w}_i \phi(\cdot, \tilde{x}_i)$
 - $\int k(\cdot, x) d\tilde{p}(x) = \sum_{i=1}^{\infty} \tilde{w}_i \int k(\cdot, x) \phi(x, \tilde{x}_i) dx$
 - For conjugate (k, ϕ) have a closed-form kernel mean embedding!

Research Tour II

Adaptive grid designs for state-space probabilistic ODE solvers

Chkrebtii (In preparation)

• For state-space probabilistic ODE solvers, the selection of the discretization grid is a problem of statistical design.

Chkrebtii (In preparation)

- For state-space probabilistic ODE solvers, the selection of the discretization grid is a problem of statistical design.
- A maximum entropy design yields a closed-form objective function that can be used to control the step size — step length decreases when the predicted and the actual model evaluations differ, i.e. when the state changes quickly.

Marginal sample paths (gray) over the unknown state, the exact solution shown in red. Gray lines in the background illustrate the adaptive time step. Mean over 100 simulation runs of the logarithm of IMSE for the adaptive (aUQDES) and equally spaced grid probabilistic numerical solver (UQDES).

Lie and Sullivan (2017) arXiv:1708.02516

- A mode of a probability measure µ on a Banach space U is a point u^{*} ∈ U of maximum probability in the case of a Bayesian posterior, a MAP estimator.
- Without a reference uniform measure, modes must be defined intrinsically.

Lie and Sullivan (2017) arXiv:1708.02516

- A mode of a probability measure µ on a Banach space U is a point u^{*} ∈ U of maximum probability in the case of a Bayesian posterior, a MAP estimator.
- Without a reference uniform measure, modes must be defined intrinsically.
- A strong mode (Dashti et al., 2013):

$$u^*$$
 is a strong mode of $\mu \iff \lim_{r \to 0} \frac{\sup_{u \in \mathcal{U}} \mu(B(u, r))}{\mu(B(u^*, r))} \le 1.$

• A weak mode (Helin and Burger, 2015) with respect to a subspace $E \subset U$:

$$u^*$$
 is an *E*-weak mode of $\mu \iff \lim_{r \to 0} \frac{\sup_{v \in E} \mu(B(u^* + v, r))}{\mu(B(u^*, r))} \le 1.$

Lie and Sullivan (2017) arXiv:1708.02516

- A mode of a probability measure µ on a Banach space U is a point u^{*} ∈ U of maximum probability in the case of a Bayesian posterior, a MAP estimator.
- Without a reference uniform measure, modes must be defined intrinsically.
- A **strong mode** (Dashti et al., 2013):

$$u^*$$
 is a strong mode of $\mu \iff \lim_{r \to 0} \frac{\sup_{u \in \mathcal{U}} \mu(B(u, r))}{\mu(B(u^*, r))} \le 1.$

• A weak mode (Helin and Burger, 2015) with respect to a subspace $E \subset U$:

$$u^{\star} \text{ is an } E\text{-weak mode of } \mu \iff \lim_{r \to 0} \frac{\sup_{v \in E} \mu(B(u^{\star} + v, r))}{\mu(B(u^{\star}, r))} \leq 1.$$

- All strong modes are weak modes, but are all weak modes strong modes?
- Lie and Sullivan (2017) replace the norm ball *B* by any open, bounded neighbourhood *K* of 0 in a topological vector space *U*.

STRONG AND WEAK MODES OF MEASURES

The set *K* is said to have *locally inwardly translatable boundary* ∂K if, for all $z \in \partial K$, there exists $v \in U \setminus \{0\}$ and an open neighbourhood *W* of *z* such that, for all $0 < \lambda < 1$,

$$\lambda v + W \cap \partial K \subset K. \tag{LITB}$$

The *coincident limiting ratios* condition holds for $x \in U$ and $E \subset U$ if

$$\lim_{r \to 0} \frac{\sup_{v \in E} \mu(K(x+v,r))}{\mu(K(x,r))} = \lim_{r \to 0} \frac{\sup_{z \in \mathcal{U}} \mu(K(z,r))}{\mu(K(x,r))}.$$
 (CLR)

The set *K* is said to have *locally inwardly translatable boundary* ∂K if, for all $z \in \partial K$, there exists $v \in U \setminus \{0\}$ and an open neighbourhood *W* of *z* such that, for all $0 < \lambda < 1$,

$$\lambda v + W \cap \partial K \subset K. \tag{LITB}$$

The *coincident limiting ratios* condition holds for $x \in U$ and $E \subset U$ if

$$\lim_{r \to 0} \frac{\sup_{v \in E} \mu(K(x+v,r))}{\mu(K(x,r))} = \lim_{r \to 0} \frac{\sup_{z \in \mathcal{U}} \mu(K(z,r))}{\mu(K(x,r))}.$$
 (CLR)

Theorem 1 (Lie and Sullivan, 2017)

If K satisfies (LITB), and *if E is topologically dense in U*, then (CLR) holds for all $x \in U$.

Let *E* contain the origin or be topologically dense in a neighbourhood of the origin, and let u^* be an *E*-weak mode. Then u^* is a strong mode if and only if u^* and *E* satisfy (CLR).

Hence, if E is topologically dense in U *and K satisfies* (LITB)*, then* u^* *is a strong mode if and only if it is an E-weak mode.*

Lie, Stuart, and Sullivan (2017a) arXiv:1703.03680

- Aim: provide a randomised numerical solution to an ODE, where the stochasticity in the solution represents the accumulated impact of truncation error along the flow.
- Numerical analysis objective: quantify the convergence rate of such methods.

Lie, Stuart, and Sullivan (2017a) arXiv:1703.03680

- Aim: provide a randomised numerical solution to an ODE, where the stochasticity in the solution represents the accumulated impact of truncation error along the flow.
- Numerical analysis objective: quantify the convergence rate of such methods.
- For a randomised numerical solution $(U_k)_{k=0}^{T/h}$ with time step h > 0, we seek a result of the form

$$\mathbb{E}\left[\sup_{0\leq k\leq T/h}|U_k-u(kh)|^2\right]\leq Ch^r,$$

and relate *r* to the order of deterministic methods.

Lie, Stuart, and Sullivan (2017a) arXiv:1703.03680

- Aim: provide a randomised numerical solution to an ODE, where the stochasticity in the solution represents the accumulated impact of truncation error along the flow.
- Numerical analysis objective: quantify the convergence rate of such methods.
- For a randomised numerical solution $(U_k)_{k=0}^{T/h}$ with time step h > 0, we seek a result of the form

$$\mathbb{E}\left[\sup_{0\leq k\leq T/h}|U_k-u(kh)|^2\right]\leq Ch^r,$$

and relate *r* to the order of deterministic methods.

• See the talk of **Han Cheng Lie** later for further discussion — what kinds of integrators, what kinds of vector fields / flows, and what technical conditions.

The (cubic) cost of inverting a Gram matrix Θ := (G(x_i, x_j))_{i,j∈I} of a kernel G is a major computational bottleneck in Gaussian process techniques.

- The (cubic) cost of inverting a Gram matrix Θ := (G(x_i, x_j))_{i,j∈I} of a kernel G is a major computational bottleneck in Gaussian process techniques.
- A probabilistic interpretation of Cholesky factorisation yields a simple novel algorithm for inversion of "nice" dense kernel matrices at near-linear cost.
- Simple idea: perform a zero-fill-in incomplete Cholesky factorisation ichol(0) with respect to some sparsity pattern $S_{\rho} \subset \mathcal{I} \times \mathcal{I}, \rho > 0$ an "interaction radius".

- The (cubic) cost of inverting a Gram matrix Θ := (G(x_i, x_j))_{i,j∈I} of a kernel G is a major computational bottleneck in Gaussian process techniques.
- A probabilistic interpretation of Cholesky factorisation yields a simple novel algorithm for inversion of "nice" dense kernel matrices at near-linear cost.
- Simple idea: perform a zero-fill-in incomplete Cholesky factorisation ichol(0) with respect to some sparsity pattern $S_{\rho} \subset \mathcal{I} \times \mathcal{I}, \rho > 0$ an "interaction radius".
- The clever part: a coarse-to-fine ordering of the *x_i* yielding near-linear sparsity pattern in near-linear complexity. This can be justified using quite easy heuristics, and proved using the theory of gamblets (Owhadi and Scovel, 2017).

- The (cubic) cost of inverting a Gram matrix Θ := (G(x_i, x_j))_{i,j∈I} of a kernel G is a major computational bottleneck in Gaussian process techniques.
- A probabilistic interpretation of Cholesky factorisation yields a simple novel algorithm for inversion of "nice" dense kernel matrices at near-linear cost.
- Simple idea: perform a zero-fill-in incomplete Cholesky factorisation ichol(0) with respect to some sparsity pattern $S_{\rho} \subset \mathcal{I} \times \mathcal{I}$, $\rho > 0$ an "interaction radius".
- The clever part: a coarse-to-fine ordering of the *x_i* yielding near-linear sparsity pattern in near-linear complexity. This can be justified using quite easy heuristics, and proved using the theory of gamblets (Owhadi and Scovel, 2017).
- Setting: $\Omega \subset \mathbb{R}^d$ is a Lipschitz domain; s > d/2 is an integer, $\mathcal{L} : H_0^s(\Omega) \to H^{-s}(\Omega)$ is a linear, local, bounded, invertible, positive and self-adjoint operator and $G = \mathcal{L}^{-1}$ its Green's function; $\{x_i\}_{i \in \mathcal{I}} \subset \Omega$ is a "nice" point set.

FAST OPERATIONS ON KERNEL MATRICES

Above: ordering a near-uniform data set from coarse to fine. Below: a dense kernel matrix in this ordering, and its ichol(0) factor.

Theorem 2 (Schäfer et al., 2017)

Under mild technical conditions, the ichol(0) factorization of the sparsified kernel matrix $\Theta_{\rho} := \Theta \mathbb{1}_{S_{\rho}}$ has computational complexity $O(N \log(N) \rho^d)$ in space and $O(N \log^2(N) \rho^{2d})$ in time; finding S_{ρ} can also be achieved at this complexity.

Theorem 2 (Schäfer et al., 2017)

Under mild technical conditions, the ichol(0) factorization of the sparsified kernel matrix $\Theta_{\rho} := \Theta \mathbb{1}_{S_{\rho}}$ has computational complexity $O(N \log(N) \rho^d)$ in space and $O(N \log^2(N) \rho^{2d})$ in time; finding S_{ρ} can also be achieved at this complexity.

Theorem 3 (Schäfer et al., 2017)

Let $\{x_i\}_{i\in\mathcal{I}}\subset\Omega$ *be such that*

$$\frac{\max_{x\in\Omega}\min_{i\in\mathcal{I}}\operatorname{dist}(x_i,x)}{\min_{i\neq j\in\mathcal{I}}\left(\operatorname{dist}(x_i,\{x_j\}\cup\partial\Omega)\right)} \leq \frac{1}{\delta}$$

and define $\Theta_{i,j} := G(x_i, x_j)$. Then the ichol(0) factor L_ρ of Θ_ρ has approximation error

$$\left\| \Theta - PL_{\rho}L_{\rho}^{\mathsf{T}}P^{\mathsf{T}} \right\| \leq C \operatorname{poly}(N) \exp(-\gamma \rho).$$

In particular, an ε -approximation of Θ can be obtained in computational complexity $O(N\log(N)\log^d(N/\varepsilon))$ in space and $O(N\log^2(N)\log^{2d}(N/\varepsilon))$ in time.

Lie, Sullivan, and Teckentrup (2017b) arXiv:1712.05717

Bayesian inverse problem à la Stuart (2010)

BIP with prior μ_0 on \mathcal{U} , data $y \in \mathcal{Y}$, and negative log-likelihood $\Phi: \mathcal{U} \times \mathcal{Y} \to \mathbb{R}$: realise the posterior μ^y on \mathcal{U}

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(u) = \frac{\exp(-\Phi(u;y))}{Z(y)}.$$
(1)

Lie, Sullivan, and Teckentrup (2017b) arXiv:1712.05717

Bayesian inverse problem à la Stuart (2010)

BIP with prior μ_0 on \mathcal{U} , data $y \in \mathcal{Y}$, and negative log-likelihood $\Phi: \mathcal{U} \times \mathcal{Y} \to \mathbb{R}$: realise the posterior μ^y on \mathcal{U}

$$\frac{d\mu^{y}}{d\mu_{0}}(u) = \frac{\exp(-\Phi(u;y))}{Z(y)}.$$
(1)

- How does replacing Φ by a randomised numerical approximation Φ_N impact μ^y ?
 - Φ_N could be a kriging/GP surrogate for Φ (Stuart and Teckentrup, 2018);
 - \mathcal{Y} could be high-dimensional and Φ_N could result from subsampling;
 - a deterministic forward model G: U → Y inside Φ could be replaced by a PN forward model G_N in Φ_N.
- Goal: transfer the (probabilistic) convergence rate $\Phi_N \to \Phi$ to a (probabilistic) convergence rate $\mu_N^y \to \mu^y$.

RANDOM AND DETERMINISTIC APPROXIMATE POSTERIORS

• Replacing Φ by Φ_N in (1), we obtain a random approximation μ_N^{samp} of μ :

$$\frac{\mathrm{d}\mu_N^{\mathrm{samp}}}{\mathrm{d}\mu_0}(u) \coloneqq \frac{\exp(-\Phi_N(u))}{Z_N^{\mathrm{samp}}}, \qquad (2)$$

$$Z_N^{\mathrm{samp}} \coloneqq \mathbb{E}_{\mu_0}[\exp(-\Phi_N(\cdot))].$$

RANDOM AND DETERMINISTIC APPROXIMATE POSTERIORS

• Replacing Φ by Φ_N in (1), we obtain a random approximation μ_N^{samp} of μ :

$$\frac{\mathrm{d}\mu_N^{\mathrm{samp}}}{\mathrm{d}\mu_0}(u) \coloneqq \frac{\exp(-\Phi_N(u))}{Z_N^{\mathrm{samp}}}, \qquad (2)$$

$$Z_N^{\mathrm{samp}} \coloneqq \mathbb{E}_{\mu_0}[\exp(-\Phi_N(\cdot))].$$

• Taking the expectation of the random likelihood gives a deterministic approximation:

$$\frac{\mathrm{d}\mu_N^{\mathrm{marg}}}{\mathrm{d}\mu_0}(u) \coloneqq \frac{\mathbb{E}_{\nu_N} \big[\exp(-\Phi_N(u)) \big]}{\mathbb{E}_{\nu_N} \big[Z_N^{\mathrm{samp}} \big]}.$$

• Replacing Φ by Φ_N in (1), we obtain a random approximation μ_N^{samp} of μ :

$$\frac{\mathrm{d}\mu_{N}^{\mathrm{samp}}}{\mathrm{d}\mu_{0}}(u) \coloneqq \frac{\exp(-\Phi_{N}(u))}{Z_{N}^{\mathrm{samp}}},$$

$$Z_{N}^{\mathrm{samp}} \coloneqq \mathbb{E}_{\mu_{0}}[\exp(-\Phi_{N}(\cdot))].$$
(2)

Taking the expectation of the random likelihood gives a deterministic approximation:

$$\frac{\mathrm{d}\mu_N^{\mathrm{marg}}}{\mathrm{d}\mu_0}(u) \coloneqq \frac{\mathbb{E}_{\nu_N}\big[\exp(-\Phi_N(u))\big]}{\mathbb{E}_{\nu_N}\big[Z_N^{\mathrm{samp}}\big]}.$$

• An alternative deterministic approximation can be obtained by taking the expected value of the density $(Z_N^{\text{samp}})^{-1}e^{-\Phi_N(u)}$ in (2). However, μ_N^{marg} provides a clear interpretation as the posterior obtained by the approximation of the true data likelihood $e^{-\Phi(u)}$ by $\mathbb{E}_{\nu_N}[e^{-\Phi_N(u)}]$, and is more amenable to sampling methods such as pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009).

SUMMARY OF CONVERGENCE RATES

Theorem 4 (Lie, Sullivan, and Teckentrup, 2017b)

For suitable Hölder exponents p_1, p'_1, p_2, \ldots quantifying the integrability of Φ and Φ_N , we obtain deterministic convergence $\mu_N^{\text{marg}} \rightarrow \mu$ and mean-square convergence $\mu_N^{\text{samp}} \rightarrow \mu$ in the Hellinger metric:

$$d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{marg}}) \leq C \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{p_{2}'} \right]^{1/p_{2}'} \right\|_{L^{2p_{1}'p_{3}'}_{\mu_{0}}(\mathcal{U})'}$$
$$\mathbb{E}_{\nu_{N}} \left[d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{samp}})^{2} \right]^{1/2} \leq D \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{2q_{1}'} \right]^{1/2q_{1}'} \right\|_{L^{2q_{2}'}_{\mu_{0}}(\mathcal{U})}$$

SUMMARY OF CONVERGENCE RATES

Theorem 4 (Lie, Sullivan, and Teckentrup, 2017b)

For suitable Hölder exponents p_1, p'_1, p_2, \ldots quantifying the integrability of Φ and Φ_N , we obtain deterministic convergence $\mu_N^{\text{marg}} \to \mu$ and mean-square convergence $\mu_N^{\text{samp}} \to \mu$ in the Hellinger metric:

$$d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{marg}}) \leq C \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{p_{2}'} \right]^{1/p_{2}'} \right\|_{L^{2p_{1}'p_{3}'}_{\mu_{0}}(\mathcal{U})'} \\ \mathbb{E}_{\nu_{N}} \left[d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{samp}})^{2} \right]^{1/2} \leq D \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{2q_{1}'} \right]^{1/2q_{1}'} \right\|_{L^{2q_{2}'}_{\mu_{0}}(\mathcal{U})'}$$

- There are similar results for approximation of *G* by *G*_{*N*} (in a fixed quadratic misfit potential).
- One application: random solution of ODEs as in Han Cheng Lie's talk.
- Another application: random reduction of high-dimensional data...
Example: Monte Carlo approximation of high-dimensional misfits

We consider a Monte Carlo approximation Φ_N of a quadratic potential Φ (Nemirovski et al., 2008; Shapiro et al., 2009), further applied and analysed in the MAP estimator context by Le et al. (2017). This approximation is particularly useful for data $y \in \mathbb{R}^J$, $J \gg 1$.

$$\begin{split} \Phi(u) &\coloneqq \frac{1}{2} \left\| \Gamma^{-\frac{1}{2}}(y - G(u)) \right\|^{2} \\ &= \frac{1}{2} \left(\Gamma^{-\frac{1}{2}}(y - G(u)) \right)^{\mathrm{T}} \mathbb{E}[\sigma \sigma^{\mathrm{T}}] \left(\Gamma^{-\frac{1}{2}}(y - G(u)) \right) \quad \text{where } \mathbb{E}[\sigma] = 0 \in \mathbb{R}^{J}, \mathbb{E}[\sigma \sigma^{\mathrm{T}}] = I_{J \times J} \\ &= \frac{1}{2} \mathbb{E} \left[\left| \sigma^{\mathrm{T}} \left(\Gamma^{-\frac{1}{2}}(y - G(u)) \right) \right|^{2} \right] \\ &\approx \frac{1}{2N} \sum_{i=1}^{N} \left| \sigma^{(i)^{\mathrm{T}}} \left(\Gamma^{-\frac{1}{2}}(y - G(u)) \right) \right|^{2} \qquad \text{for i.i.d. } \sigma^{(1)}, \dots, \sigma^{(N)} \stackrel{\mathrm{d}}{=} \sigma \\ &= \frac{1}{2} \left\| \Sigma_{N}^{\mathrm{T}} \left(\Gamma^{-\frac{1}{2}}(y - G(u)) \right) \right\|^{2} \qquad \text{for } \Sigma_{N} \coloneqq \frac{1}{\sqrt{N}} [\sigma^{(1)} \cdots \sigma^{(N)}] \in \mathbb{R}^{J \times N} \\ &=: \Phi_{N}(u). \end{split}$$

Le et al. (2017) suggest that a good choice for the \mathbb{R}^{J} -valued random vector σ would be one with independent and identically distributed (i.i.d.) entries from a sub-Gaussian probability distribution, e.g.

- the Gaussian distribution: $\sigma_j \sim \mathcal{N}(0, 1)$, for j = 1, ..., J; and
- the ℓ -sparse distribution: for $\ell \in [0, 1)$, let $s := \frac{1}{1-\ell} \ge 1$ and set, for $j = 1, \dots, J$,

$$\sigma_{j} \coloneqq \sqrt{s} \begin{cases} 1, & \text{with probability } \frac{1}{2s}, \\ 0, & \text{with probability } \ell = 1 - \frac{1}{s}, \\ -1, & \text{with probability } \frac{1}{2s}. \end{cases}$$

- Le et al. (2017) observe that, for large *J* and moderate $N \approx 10$, the random potential Φ_N and the original potential Φ are very similar, in particular having approximately the same minimisers and minimum values.
- Statistically, these correspond to the maximum likelihood estimators under Φ and Φ_N being very similar; after weighting by a prior, this corresponds to similarity of maximum a posteriori (MAP) estimators.
- Here, we study the BIP instead of the MAP problem, and thus the corresponding conjecture is that the deterministic posterior $d\mu(u) \propto \exp(-\Phi(u)) d\mu_0(u)$ is well approximated by the random posterior $d\mu_N^{\text{samp}}(u) \propto \exp(-\Phi_N(u)) d\mu_0(u)$.

Applying the general results to this setting gives the following transfer of the Monte Carlo convergence rate from the approximation of Φ to the approximation of μ :

Proposition 5

Suppose that the entries of σ are i.i.d. ℓ -sparse, for some $\ell \in [0,1)$, and that $\Phi \in L^2_{\mu_0}(\mathcal{U})$. Then there exists a constant C, independent of N, such that

$$\left(\mathbb{E}_{\sigma}\left[d_{\mathrm{H}}\left(\mu,\mu_{N}^{\mathrm{samp}}\right)^{2}\right]\right)^{1/2} \leq \frac{C}{\sqrt{N}}.$$

For technical reasons to do with the non-compactness of the support and finiteness of MGFs of maxima, the current proof technique does not work for the Gaussian case.

Summary

Antoine de Saint-Exupéry, *The Little Prince*, 1943

Antoine de Saint-Exupéry, *The Little Prince*, 1943 • We appear to have swallowed an elephant...

Antoine de Saint-Exupéry, *The Little Prince*, 1943

- We appear to have swallowed an elephant...
- ...in the sense that there is a lot of PN activity going on, the SAMSI WG is just part of it, and more is coming.

- We appear to have swallowed an elephant...
- ...in the sense that there is a lot of PN activity going on, the SAMSI WG is just part of it, and more is coming.
- The field is coming into mathematical and statistical maturity.
 - Proof-of-concept examples
 - Rigorous analysis and underpinnings

 \sqrt{X}

- "Killer apps"
- Reference implementations

Thank You!

- C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. *Ann. Statist.*, 37(2): 697–725, 2009. doi:10.1214/07-AOS574.
- M. A. Beaumont. Estimation of population growth or decline in genetically monitored populations. *Genetics*, 164(3): 1139–1160, 2003.
- F.-X. Briol, J. Cockayne, O. Teymur, W. W. Yoo, M. Schober, and P. Hennig. Contributed discussion on article by Chkrebtii, Campbell, Calderhead, and Girolami. *Bayesian Anal.*, 11(4):1285–1293, 2016. doi:10.1214/16-BA1017A.
- O. A. Chkrebtii. Adaptive grid designs for state-space probabilistic ODE solvers, In preparation.
- J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods, 2017. arXiv:1702.03673.
- J. Cockayne, C. J. Oates, and M. Girolami. A Bayesian conjugate gradient method, 2018. arXiv:1801.05242.
- P. R. Conrad, M. Girolami, S. Särkkä, A. M. Stuart, and K. C. Zygalakis. Statistical analysis of differential equations: introducing probability measures on numerical solutions. *Stat. Comput.*, 27(4), 2016. doi:10.1007/s11222-016-9671-0.
- M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric inverse problems. *Inverse Problems*, 29(9):095017, 27, 2013. doi:10.1088/0266-5611/29/9/095017.
- P. Diaconis. Bayesian numerical analysis. In Statistical Decision Theory and Related Topics, IV, Vol. 1 (West Lafayette, Ind., 1986), pages 163–175. Springer, New York, 1988.
- V. Dukic and D. M. Bortz. Uncertainty quantification using probabilistic numerics: application to models in mathematical epidemiology. *Inv. Probl. Sci. Engrng*, 26(2):223–232, 2018. doi:10.1080/17415977.2017.1312364.
- T. Helin and M. Burger. Maximum *a posteriori* probability estimates in infinite-dimensional Bayesian inverse problems. *Inverse Problems*, 31(8):085009, 22, 2015. doi:10.1088/0266-5611/31/8/085009.

References II

- P. Hennig, H. Kersting, and T. J. Sullivan. Convergence rates of Gaussian ODE filters, In preparation.
- T. Karvonen, C. J. Oates, and S. Särkkä. A Bayes–Sard cubature method, 2018. arXiv:1804.03016.
- F. M. Larkin. Optimal approximation in Hilbert spaces with reproducing kernel functions. *Math. Comp.*, 24:911–921, 1970. doi:10.2307/2004625.
- E. B. Le, A. Myers, T. Bui-Thanh, and Q. P. Nguyen. A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. *Inverse Probl.*, 33(6):065003, 2017. doi:10.1088/1361-6420/aa6cbd.
- H. C. Lie and T. J. Sullivan. Equivalence of weak and strong modes of measures on topological vector spaces, 2017. arXiv:1708.02516.
- H. C. Lie, A. M. Stuart, and T. J. Sullivan. Strong convergence rates of probabilistic integrators for ordinary differential equations, 2017a. arXiv:1703.03680.
- H. C. Lie, T. J. Sullivan, and A. L. Teckentrup. Random forward models and log-likelihoods in Bayesian inverse problems, 2017b. arXiv:1712.05717.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2008. doi:10.1137/070704277.
- C. J. Oates, J. Cockayne, and R. G. Ackroyd. Bayesian probabilistic numerical methods for industrial process monitoring, 2017a. arXiv:1707.06107.
- C. J. Oates, S. Niederer, A. Lee, F.-X. Briol, and M. Girolami. Probabilistic models for integration error in assessment of functional cardiac models. In *Advances in Neural Information Processing Systems*, volume 30. 2017b. arXiv:1606.06841.
- H. Owhadi and C. Scovel. Universal scalable robust solvers from computational information games and fast eigenspace adapted multiresolution analysis, 2017. arXiv:1703.10761.

References III

- H. Poincaré. Calcul des Probabilites. Georges Carré, Paris, 1896.
- J. Rathinavel and F. J. Hickernell. Automatic Bayesian cubature, In preparation.
- K. Ritter. Average-Case Analysis of Numerical Problems, volume 1733 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. doi:10.1007/BFb0103934.
- F. Schäfer, T. J. Sullivan, and H. Owhadi. Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, 2017. arXiv:1706.02205.
- A. Shapiro, D. Dentcheva, and A. Ruszczyński. *Lectures on Stochastic Programming: Modeling and Theory*, volume 9 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2009. doi:10.1137/1.9780898718751.
- J. Skilling. Bayesian solution of ordinary differential equations. In C. R. Smith, G. J. Erickson, and P. O. Neudorfer, editors, Maximum Entropy and Bayesian Methods, volume 50 of Fundamental Theories of Physics, pages 23–37. Springer, 1992. doi:10.1007/978-94-017-2219-3.
- A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 19:451–559, 2010. doi:10.1017/S0962492910000061.
- A. M. Stuart and A. L. Teckentrup. Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. *Math. Comp.*, 87(310):721–753, 2018. doi:10.1090/mcom/3244.
- J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. *Information-Based Complexity*. Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA, 1988. With contributions by A. G. Werschulz and T. Boult.
- L. N. Trefethen. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev., 50(1):67–87, 2008. doi:10.1137/060659831.
- X. Xi, F.-X. Briol, and M. Girolami. Bayesian quadrature for multiple related integrals, 2018. arXiv:1801.04153.