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“Numerical analysts and statisticians are both in
the business of estimating parameter values from
incomplete information. The two disciplines have
separately developed their own approaches to
formalizing strangely similar problems and their
own solution techniques; the author believes they
have much to offer each other.”

— F. M. Larkin (1979b)
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OVERVIEW: PNMS AND BIPS

There are many reasons to consider a probabilistic/statistical perspective on the
analysis and design of numerical methods, and even to return probabilistic
solutions to deterministic forward problems like quadrature / DE solution.
In various forms, these ideas have a long history.

→ Oates and Sullivan (2019) Stat. Comp. arXiv:1901.04457
What are probabilistic numerical methods (PNMs) and in what sense can they be
Bayesian? → Cockayne et al. (2019) SIAM Rev. arXiv:1702.03673
A Bayesian interpretation of forward problems is especially appealing for Bayesian
inverse problems (BIPs), since then both the forward and inverse problem “speak
the same language”, without spurious posterior over-concentration.
How does their use connect to established theory for BIPs?

→ Lie et al. (2018) SIAM/ASA JUQ arXiv:1712.05717
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Nonlinear FitzHugh–Nagumo oscillator u : [0, T] → R2:

du
dt = f(u) :=

[
u1 − u31

3 + u2
− 1

θ3
(u1 − θ1 + θ2u2)

]
Aim: recover θ ∈ R3

>0 from observations yi = u(tobsi ) + ηi taken at discrete times
tobsi = 0, 1, . . . , 40, with ηi ∼ N (0, 10−3I) i.i.d.
Take ground truth u(0) = (−1, 1) and θ = (0.2, 0.2, 3); generate data y from a
reference trajectory using RK4 with time step τ = τref = 10−3.
Infer θ using PN–Euler solvers with local noise ξ of variance ∝ στ3 and hence strong
error E

[
sup0≤t≤T ‖u(t)− uPN(t)‖2

]
≤ Cτ2 (Conrad et al., 2016; Lie et al., 2019).

Log-normal prior for θ ⇝ marginal Bayesian posterior Eξ

[
P[θ|y, σ, τ, ξ]

]
for various

τ � τref and σ ≥ 0.
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: The deterministic posteriors (i.e. σ = 0) are over-confident at all values of the time step
τ = 0.1, 0.05, 0.02, 0.01, 0.005, often do not overlap, and are biased.
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MOTIVATING EXAMPLE: FITZHUGH–NAGUMO ODE INFERENCE

Figure 1: In contrast, the PN-Euler posteriors (here with σ = 1/5) for τ = 0.1, 0.05, 0.02, 0.01, 0.005

are less confident and overlap more; admittedly they are still biased.
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A LITTLE HISTORY



POINCARÉ (1912) BLENDS INTERPOLATION AND PROBABILITY

“Je suppose que l’on sache a priori que la fonction f(x) est développable, dans une
certain domaine, suivant les puissances croissantes des x,

f(x) = A0 + A1x+ . . . .

Nous ne savons rien sur les A, sauf que la probabilité pour que l’un d’eux, Ai, soit compris
entre certaines limites, y et y+ dy, est√

hi
π
e−hiy2 dy.

Nous connaissons par n observations

f(a1) = B1, f(a2) = B2, · · · · · · · · · · · · f(an) = Bn.

Nous cherchons la valeur probable de f(x) pour une autre valeur de x.”

Skip to Evolution of Concepts ▶ 6/53



ROUND-OFF ERROR

What about probabilistic numerical methods for use on a computer?
The limited nature of the earliest computers led authors to focus initially on the
phenomenon of round-off error (Henrici, 1962; Hull and Swenson, 1966; von
Neumann and Goldstine, 1947), whether of fixed-point or floating-point type,
without any particular statistical inferential motivation; indeed, this aspect is still
alive (Barlow and Bareiss, 1985; Chatelin and Brunet, 1990; Tienari, 1970).
One early, utilitarian view is that probabilistic models in computation are just useful
shortcuts:
“[Round-off errors] are strictly very complicated but uniquely defined number
theoretical functions [of the inputs], yet our ignorance of their true nature is
such that we best treat them as random variables.”

— von Neumann and Goldstine (1947, p. 1027)
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AL′BERT VALENTINOVICH SUL′DIN

One of the earliest attempts to statistically
motivate a numerical algorithm was due to A. V.
Sul′din (1924–1996), working at Kazan State
University in the USSR.
After first making contributions to the study of
Lie algebras, towards the end of the 1950s
Sul′din turned his attention to computational
and applied mathematics, and in particular to
probabilistic and statistical methodology.
His work led to the establishment of the Faculty
of Computational Mathematics and Cybernetics
in Kazan, of which he was the founding Dean.

Al′bert Valentinovich Sul′din (1924–1996)
© Kazan Federal University, reproduced

with permission.
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FREDERICK MICHAEL (“MIKE”) LARKIN

On the other side of the Iron Curtain, between
1957 and 1969, Frederick Michael (“Mike”) Larkin
(1936–1982) worked for the UK Atomic Energy
Authority in its laboratories at Harwell and
Culham, as well as working for two years at Rolls
Royce; from 1969, he was at Queen’s University in
Kingston, Ontario, Canada.
Following a parallel path to that of Sul′din, over
the next decade Larkin would further blend
numerical analysis and statistical thinking
(Kuelbs et al., 1972; Larkin, 1969, 1972, 1974,
1979a,b,c), arguably laying the foundations of
modern PN as a kind of inference.

Frederick Michael Larkin (1936–1982)
© (Larkin et al., 1967, reproduced with

permission).
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LARKIN

Larkin worked on building some of the first graphical calculators, called GHOST
(short for graphical output system), and the GHOUL (graphical output language) —
perhaps a motivation for seeking a richer description of numerical error.
The perspective developed by Larkin was fundamentally statistical and, in modern
terminology, the probabilistic numerical methods he developed would be described
as Bayesian — though Larkin used the term relative likelihood for the prior.
Larkin’s perspective on quadrature: consider the Wiener measure as a prior, the
information (tj,u(tj))Jj=1

as (noiseless) data, and output the posterior marginal for∫ b
a u(t)dt — what we would now recognise as a probabilistic numerical method:
“[This] permits, at least in principle, the derivation of joint probability density
functions for [both observed and unobserved] functionals on the space and also
allows us to evaluate confidence limits on the estimate of a required functional
(in terms of given values of other functionals).” — Larkin (1972) 10/53



LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE I

We wish to approximate the definite integral
∫ b
a u(t)dt of u ∈ U := C0([a,b];R) under

a statistical assumption that (u(t)− u(a))t∈[a,b] follows a standard Brownian motion
(Wiener measure, µW).
We receive pointwise data about u in the form of the values of u at J ∈ N nodes
a = t1 < t2 < · · · < tJ = b.
In more statistical language, anticipating the terminology of Cockayne et al. (2019):

we have a latent quantity (integrand) u living in a space U ,
our observed data or information concerning u is y := (tj,u(tj))Jj=1, living in the space
Y := ([a,b]× R)J,
and we care about the quantity of interest Q(u) :=

∫ b
a u(t)dt, living in Q := R.
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LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE II

Sul′din (1959, 1960, 1963) showed by direct calculation that the quadrature rule
B : Y → R that minimises the mean squared error

∫
U

∣∣∣∣∣
∫ b

a
u(t)dt− B

(
(tj,u(tj))Jj=1

)∣∣∣∣∣
2

µW(du)

is the classical trapezoidal rule

Btr
(
(tj, zj)Jj=1

)
:=

1

2

J−1∑
j=1

(zj+1 + zj)(tj+1 − tj) = z1
t2 − t1

2
+

J−1∑
j=2

zj
tj+1 − tj−1

2
+ zJ

tJ − tJ−1

2
,

i.e. the definite integral of the piecewise linear interpolant of the observed data.
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LARKIN V. SUL′DIN ON UNIVARIATE QUADRATURE III

Thus, Sul′din described the trapezoidal rule Btr as a frequentist point estimator
obtained from minimising the mean square error, which “just happens” to produce
an unbiased estimator with variance 1

12

∑J−1
j=1(tj+1 − tj)3.

However, Larkin saw the normal distribution

N
(
Btr

(
(tj, zj)Jj=1

)
, 1
12

∑J−1
j=1(tj+1 − tj)3

)
on R as the measure-valued output of a probabilistic quadrature rule, of which
Btr

(
(tj, zj)Jj=1

is a convenient point summary. En passant he made fundamental
contributions to the study of Gaussian measures (Kuelbs et al., 1972; Larkin, 1972).
Neither Larkin nor Sul′din would have had access to the computing resources
needed to realise their more general (nonlinear, non-Gaussian) vision.
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) I

The average-case analysis (ACA) of numerical methods received interest and built
on the work of Kolmogorov (1936) and Sard (1963).
In ACA the performance of a numerical method is assessed in terms of its average
error with respect to a probability measure over the problem set; a prime example is
univariate quadrature with the average quadratic loss given earlier.
A traditional (deterministic) NM can also be regarded as a decision rule and the
probability measure used in ACA can be used to instantiate the Bayesian
decision-theoretic framework (Berger, 1985). The average error is then recognised as
the expected loss, also called the risk. ACA is mathematically equivalent to Bayesian
decision theory — restricted to the case of an experiment that produces a
deterministic dataset (Kimeldorf and Wahba, 1970a,b; Parzen, 1970; Larkin, 1970).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) II

ACA optimal methods are Bayes rules or Bayes acts in the decision-theoretic
context. Kadane and Wasilkowski (1985) had the insight that ACA-optimal methods
coincide with (non-randomised) Bayes rules when the measure used to define the
MSE is the Bayesian prior. Recently it has become clear that ACA and Bayesian
optimality differ in general (Cockayne et al., 2019; Oates et al., 2019b).
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INFORMATION-BASED COMPLEXITY

Information-based complexity (IBC) developed simultaneously with ACA, with the
aim of relating the computational complexity and optimality properties of
algorithms to the available information on the unknowns.
Smale (1985) compared the accuracies (with respect to mean absolute error) for a
given cost of the Riemann sum, trapezoidal, and Simpson quadrature rules; in the
same paper, Smale also considered root-finding, optimisation via linear
programming, and the solution of systems of linear equations.
Diaconis (1988) repeated Sul′din’s observation that the posterior mean for

∫ b
a u(t)dt

under the Wiener measure prior is the trapezoidal method, which is a ACA-optimal,
and posed a further question: can other numerical methods for other tasks be
similarly recovered as Bayes rules in a decision-theoretic framework? For linear
cubature methods, a positive and constructive answer was recently provided by
Karvonen et al. (2018), but the general question remains open. 16/53



RESURGENCE FROM THE 1990S ONWARDS I

Research interest in PN was revived by contributions from on quadrature (Minka,
2000; O’Hagan, 1991; Rasmussen and Ghahramani, 2003), each to a greater or lesser
extent a rediscovery of earlier work due to Larkin (1972). In each case the algorithmic
output was considered to be a probability distribution over the quantity of interest.
The 1990s saw an expansion in the PN agenda, first with early work on an area that
would become Bayesian optimisation (Močkus, 1975, 1977, 1989).
Skilling (1992) presented a (partially) Bayesian perspective on the numerical
solution of ODE initial value problems, explicitly considering, e.g., the role of
regularity assumptions on the vector field, prior and likelihood choice, and sampling
strategies.
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RESURGENCE FROM THE 1990S ONWARDS II

Skilling himself considered his then-new explicit emphasis on a Bayesian statistical
approach to be quite natural:
“This paper arose from long exposure to Laplace/Cox/Jaynes probabilistic rea-
soning, combined with the University of Cambridge’s desire that the author teach
some (traditional) numerical analysis. The rest is common sense. […] Simply,
Bayesian ideas are ‘in the air’.” — Skilling (1992)

The machine learning community took up the ODE theme again ≈ 5 years ago
(Schober et al., 2014), provoking further mathematical analysis (Conrad et al., 2016;
Lie et al., 2019) and then an explosion of more general studies.
Gaussian process techniques also work well for some PDEs (Cockayne et al., 2016,
2017; Raissi et al., 2018).
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CONCEPTUAL EVOLUTION — A SUMMARY

1. In the traditional setting of numerical analysis, c. 1950, all objects and operations
are seen as being strictly deterministic. These deterministic objects are sometimes
exceedingly complicated, to the extent that they may be treated as being stochastic.

2. Sard and Sul′din consider the questions of optimal performance of a numerical
method in, respectively, the worst-case and the average-case context. Some of the
average-case performance measures amount to variances of point estimators but
are not viewed as such; probabilistic aspects are not a motivating factor.

3. Larkin’s innovation, 1960s–1970s, is to formulate numerical tasks in terms of a joint
distribution over latent quantities and quantities of interest; the quantity of interest
is a stochastic object. Larkin summarises his posterior distributions using a point
estimator accompanied by a credible interval.

4. The fully modern viewpoint, 2017+, is to explicitly think of the output as a probability
measure to be realised, sampled, and possibly summarised. 19/53



AN INFERENCE PERSPECTIVE ON
NUMERICAL TASKS



AN ABSTRACT VIEW OF NUMERICAL METHODS I

An abstraction of a numerical task consists of three spaces and three functions:

U , where an unknown/variable object u lives; dimU = ∞
Q, with a quantity of interest Q : U → Q;
Y , where we observe information Y(u), via a function Y : U → Y . dimY <∞

Example (Quadrature)

U = C0([0, 1];R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Conventional numerical methods are cleverly-designed functions B : Y → Q: such a
method “believes” that Q(u) ≈ B(Y(u)).
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AN ABSTRACT VIEW OF NUMERICAL METHODS II

Example (Quadrature)

U = C0([0, 1];R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

Some but not all methods B : Y → Q try to invert Y, estimate u, then apply Q.
E.g. the trapezoidal rule does estimate u, via piecewise linear interpolation:

Btr
(
(tj, zj)Jj=1

)
:=

J−1∑
j=1

zj+1 + zj
2

(tj+1 − tj) = z1
t2 − t1

2
+

J−1∑
j=2

zj
tj+1 − tj−1

2
+ zJ

tJ − tJ−1

2
.

E.g. vanilla Monte Carlo does not estimate u! (cf. O’Hagan, 1987)

BMC((ti, zi)ni=1) :=
1

n

n∑
i=1

zi
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AN ABSTRACT VIEW OF NUMERICAL METHODS III

Question: What makes for a “good” numerical method? (Larkin, 1970)
Answer 1, Gauss: B ◦ Y = Q on a “large” finite-dimensional subspace of U .
Answer 2, Sard (1949): residual B ◦ Y− Q is “small” on U . In what sense?

The worst-case error:
eWC := sup

u∈U
‖B(Y(u))− Q(u)‖Q.

The average-case error (Ritter, 2000) with respect to a probability measure µ ∈ PU :

eAC :=
∫
U
‖B(Y(u))− Q(u)‖Q µ(du).

To a Bayesian, seeing the additional structure of µ, there is only one way forward: if
u ∼ µ, then B(Y(u)) should be obtained by conditioning µ and then applying Q. But is
this Bayesian solution always well-defined, and what are its error properties?
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PNMS AND BAYESIAN PNMS I

U Y //

Q
��

Y

B
xxq q q q q q q

Q
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PNMS AND BAYESIAN PNMS I

U Y //

Q
��

Y

B
xxq q q q q q q

Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU
Y♯

//

Q♯

��

PY

B♯
xxp p p p p p p

PQ Y

δ

OO

Example (Quadrature)

U = C0([0, 1];R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

A classical numerical method B uses only
the spaces and data to produce a point
estimate of Q(u).

We could engage in average-case analysis
of B against µ.
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PNMS AND BAYESIAN PNMS I

U Y //

Q
��

Y

B
xxq q q q q q q

Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU
Y♯

/ /

Q♯

��

PY

PQ Y

δ

OO

y7→β(µ,y)
oo_ _ _ _ _ _

Example (Quadrature)

U = C0([0, 1];R) Y = ([0, 1]× R)m Q = R

Y(u) = (ti,u(ti))mi=1 Q(u) =
∫ 1

0
u(t)dt

A classical numerical method B uses only
the spaces and data to produce a point
estimate of Q(u).

A probabilistic numerical method converts
an additional belief µ ∈ PU about u into a
belief β(µ, Y(u)) ∈ PQ about Q(u). 23/53



PNMS AND BAYESIAN PNMS I

U Y //

Q
��

Y

B
xxq q q q q q q

Q

Go Probabilistic!

µ ∈ PU

(Y♯µ)(E) := µ(Y−1(E))

PU
Y♯

/ /

Q♯

��

PY

PQ Y

y 7→ µy
ffNNNNNNNNNNNNNN

δ

OO

y7→β(µ,y)
oo_ _ _ _ _ _

Definition (Bayesian PNM)
A PNM β(µ, ·) : Y → PQ with prior µ ∈ PU is Bayesian for a QoI Q : U → Q and
information operator Y : U → Y if the bottom-left Y-PU-PQ triangle commutes, i.e. the
output of β is the push-forward of the conditional distribution µy through Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y.
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PNMS AND BAYESIAN PNMS II

Definition (Bayesian PNM)
A PNM β with prior µ ∈ PU is Bayesian for a quantity of interest Q and information Y if
its output is exactly the image of the conditional distribution∗ µy = µ|[Y = y] under Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y.

(∗ conditioning in the sense of a disintegration — more later)

Example

Under the Gaussian Brownian motion prior on U = C0([0, 1];R), the posterior mean
/ MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using
linear interpolation (Sul′din, 1959, 1960).
Integrated Brownian motion prior↔ integration using cubic spline interpolation.
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PNMS AND BAYESIAN PNMS II

Definition (Bayesian PNM)
A PNM β with prior µ ∈ PU is Bayesian for a quantity of interest Q and information Y if
its output is exactly the image of the conditional distribution∗ µy = µ|[Y = y] under Q:

β(µ, y) = Q♯µ
y, for Y♯µ-almost all y ∈ Y.

(∗ conditioning in the sense of a disintegration — more later)

Example

Under the Gaussian Brownian motion prior on U = C0([0, 1];R), the posterior mean
/ MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using
linear interpolation (Sul′din, 1959, 1960).
Integrated Brownian motion prior↔ integration using cubic spline interpolation.24/53



A ROGUE’S GALLERY OF BAYESIAN AND NON-BAYESIAN PNMS (2017)
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OPTIMAL INFORMATION OPERATORS:
THE WORST, THE AVERAGE,
AND THE BAYESIAN



MEASURES OF ERROR / LOSS

Suppose we have a loss function L : Q×Q → R, e.g. L(q,q′) := ‖q− q′‖2Q.

The worst-case loss for a classical numerical method B : Y → Q is

eWC(Y,B) := sup
u∈U

L
(
B(Y(u)),Q(u)

)
.

The average-case loss under a probability measure µ ∈ PU is

eAC(Y,B) :=
∫
U
L
(
B(Y(u)),Q(u)

)
µ(du),

eAC(Y,β) :=
∫
U

[∫
Q
L
(
q,Q(u)

)
β(µ, Y(u))(dq)

]
µ(du).

For a BPNM β, we must have β(µ, y) = Q♯µ
y once Y(u) = y is given; optimality of Y

means minimising the Bayesian loss

eBPN(Y) :=
∫
U

[∫
Q
L(q,Q(u)) (Q♯µ

Y(u))(dq)
]
µ(du). 26/53



OPTIMAL INFORMATION: AC = BPN?

Kadane and Wasilkowski (1985) show that eAC-minimisers are deterministic decision
rules B, and the minimiser Y is “optimal information” for this task. But what if we restrict
to Bayesian β?

Theorem (AC = BPN for quadratic loss; Cockayne et al., 2019)
For a quadratic loss L(q,q′) := ‖q− q′‖2Q on a Hilbert space Q, optimal information
operators Y for BPNM and AC coincide (though the minimal values may differ).

Theorem (AC 6= BPN in general; Oates et al., 2019b)
If U can be partitioned into three sets of positive probability, then there exists a choice
of Q and L so that optimal information operators Y for BPNM and AC differ.

Explicit Construction ▶
27/53



DISINTEGRATION:
EXACT AND NUMERICAL



DEFINING THE POSTERIOR

The posterior µy is subtle to define precisely, since heuristically it is given by

µy(du) ∝ I[Y(u) = y]µ(du)
We have a 0-1 likelihood, and moreover the likelihood is zero µ-a.e.!

The posterior µy is singular w.r.t. µ, supported on the null event [Y = y] ⊆ U .
Why? Numerical analysts usually think of function evaluations as noiseless, in contrast
to the noisy observations that are typical in statistics.
E.g. what is the prior probability that a Brownian path interpolates given data?

We cannot even express Bayes’ formula in the form favoured by Stuart (2010),
dµy
dµ (u) = I[Y(u) = y]

Z(y) .

because Z(y) = 0.
One way to consistently condition on events of measure zero is to define the
conditioning operation in terms of disintegration. 28/53



DISINTEGRATION I

Definition (Disintegration)
A disintegration of µ ∈ PU w.r.t. Y : U → Y is a map Y → PU , y 7→ µy, such that

(support) µy({u ∈ U | Y(u) = y}) = 1 for Y#µ-almost all y ∈ Y ;

and, for each measurable f : U → [0,∞), (f = IE, E ⊆ U will do)

(measurability) y 7→
∫
U f(u)µ

y(du) is measurable
(conditioning/reconstruction/law of total probability)∫

U
f(u)µ(du) =

∫
Y

[∫
U
f(u)µy(du)

]
(Y#µ)(dy).

(Closely related concept: a regular conditional probability is basically the same thing,
but in a different coordinate system.) 29/53



DISINTEGRATION II

Theorem (Disintegration theorem (Chang and Pollard, 1997, Thm. 1))
Let U be a metric space and let µ ∈ PU be inner regular. If the Borel σ-algebra on U is
countably generated and contains all singletons {y} for y ∈ Y , then there is an
essentially unique disintegration {µy}y∈Y of µ with respect to Y. (If {νy}y∈Y is another
such disintegration, then {y ∈ Y | µy 6= νy} is an Y#µ-null set.)

The familiar conditional densities for a probability density on Rn conditioned on a
“nice” subset such as a lower-dimensional submanifold M ⊂ Rn are disintegrations.
In particular, the familiar Woodbury formula for the conditioning of Gaussian
measures subject to linear constraints is a disintegration (Owhadi and Scovel, 2015).
But, in general, disintegrations cannot be computed exactly — we have to work
approximately.
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NUMERICAL DISINTEGRATION I

The exact disintegration “µy(du) ∝ I[Y(u) = y]µ(du)” can be accessed numerically
via relaxation, with approximation guarantees provided y 7→ µy is “nice”, e.g.
Y♯µ ∈ PY has a smooth Lebesgue density.
Consider relaxed posterior µyδ(du) ∝ ϕ(‖Y(u)− y‖Y/δ)µ(du) with 0 < δ � 1.

Essentially any ϕ : [0,∞) → [0, 1] tending continuously to 1 at 0 and decaying quickly
enough to 0 at∞ will do.
E.g. ϕ(r) := I[r < 1] or ϕ(r) := exp(−r2).

The integral probability metric on PU associated to a normed space F of test
functions f : U → R is

dF (µ, ν) := sup
{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}
.

F = bounded continuous functions with uniform norm↔ total variation.
F = bounded Lipschitz continuous functions with Lipschitz norm↔ Wasserstein.
F = RKHS of functions↔ maximum mean discrepancy. 31/53



NUMERICAL DISINTEGRATION II

“µy(du) ∝ I[Y(u) = y]µ(du)” µyδ(du) ∝ ϕ(‖Y(u)− y‖Y/δ)µ(du)
dF (µ, ν) := sup

{
|µ(f)− ν(f)|

∣∣‖f‖F ≤ 1
}

Theorem (Cockayne et al., 2019, Theorem 4.4)
For any normed space F , if y 7→ µy is γ-Hölder from (Y, ‖·‖Y) into (PU ,dF ), then so too
is the approximation µyδ ≈ µy as a function of δ. That is,

dF
(
µy, µy

′) ≤ C · ‖y− y′‖γ for y, y′ ∈ Y
=⇒ dF

(
µy, µyδ

)
≤ C · Cϕ · δγ for Y♯µ-almost all y ∈ Y .

Open question: when does the hypothesis, a quantitative version of the Tjur property
(Tjur, 1980), actually hold? (Fixed y and free y′ is easy; both y and y′ free is hard.) 32/53



EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL I

A simple boundary value problem with multiple solutions:

u′′(t)− u(t)2 = −t for t ≥ 0

u(0) = 0 u(t)/
√
t→ 1 as t→ +∞
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Figure 2: The two solutions of Painlevé’s first transcendental and their spectra in the
orthonormal Chebyshev polynomial basis over [0, 10]. 33/53
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EXAMPLE: PAINLEVÉ’S FIRST TRANSCENDENTAL II

Try a Gaussian prior on u; we obtain
qualitatively similar results for a
heavy-tailed Cauchy prior (Sullivan,
2017).
Parallel tempered pCN-MCMC with 100
δ-values log-spaced from δ = 10 to
δ = 10−4 and 108 iterations recovers
both solutions in approximately the
same proportions as the posterior
densities at the two exact solutions.
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ACCESSING THE BPNM POSTERIOR — LINKS TO OTHER PROBLEMS

What ways do we have around the cost of MCMC for BPNM?

Of course, we have explicit conditioning in the (unimodal!) linear Gaussian case, e.g.
the probabilistic meshless solver of Cockayne et al. (2016, 2017) for elliptic PDE. For
even mildly smooth solution objects, the “screening effect” enables near-linear
computational complexity (Schäfer et al., 2017).
SMC seems to reliably but transiently detect the existence of multiple solutions but
then suffers extinction problems.
High-order quadrature (QMC) (e.g. Dick et al., 2014) and Laplace approximations for
highly-concentrated posteriors (Schillings et al., 2019).
Kernel and conditional mean embedding (Berlinet and Thomas-Agnan, 2004; Smola
et al., 2007; …; Klebanov et al., 2019) of probability distributions into RKHSs, with
applications to nonlinear statistics (Nava-Yazdani et al., 2020).
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COHERENT PIPELINES OF PNMS, AND
BAYESIAN INVERSE PROBLEMS



COMPUTATIONAL PIPELINES

Numerical methods usually form part
of pipelines.
Prime example: a PDE solve is a forward
model in an inverse problem.
Motivation for PNMs in the context of
Bayesian inverse problems:
Make the forward and inverse problem
speak the same statistical language!
We can compose PNMs in series, e.g. β2(β1(µ, y1), y2) is formally β(µ, (y1, y2))…
although figuring out what the spaces U i, Y i and operators Yi etc. are is a headache!
A graphical approach is both more intuitive and useful for analysis.
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PIPELINE EXAMPLE: SPLIT INTEGRATION

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 1/2
0 u(t)dt

∫ 1
1/2 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 <
1
2 ,

tm = 1
2 , and

1
2 < tm+1 < · · · < t2m ≤ 1.

For example, the two nodal sets are very large, and so two are handled by two
different processors with non-shared memory.
A third processor handles the (easy!) task of aggregating the two estimates of the
two integrals

∫ 1/2
0 u(t)dt and

∫ 1
1/2 u(t)dt into an estimate of

∫ 1
0 u(t)dt.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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COHERENCE I

We compose PNMs in a graphical way by allowing input information nodes (□) to
feed into method nodes (■), which in turn output new information.
N.B. one should at first think of having deterministic data at the left-most □ nodes,
then random variables as outputs, realisations of which get fed into the next ■.
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We define the corresponding dependency graph by replacing each □→■→□ by □→□,
and number the □ vertices in an increasing fashion.
The independence properties of the random variables at each node are crucial. 38/53



COHERENCE II

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 1/2
0 u(t)dt

∫ 1
1/2 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Definition
A prior µ and dependency graph are coherent if, when the “leaf” input nodes are
Y♯µ-distributed and the remaining nodes are β(µ,parents)-distributed, each node is
conditionally independent of all older non-parent nodes given its direct parents:

Yk ⊥⊥ Y{1,...,k−1}\parents(k) | Yparents(k).

(Generalises the Markov condition for directed acyclic graphs of Lauritzen (1991).) 39/53
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COHERENCY THEOREM

Theorem (Cockayne et al., 2019, Theorem 5.9)
If a pipeline of PNMs is coherent and the component PNMs are all Bayesian, then the
pipeline is Bayesian as a whole, i.e. is equivalent to the Bayesian pipeline

data at leaves β(µ, ·) final output .

Redundant structure in the pipeline (recycled information) will break coherence,
and hence Bayesianity of the pipeline.
In principle, coherence and hence being Bayesian depend upon the prior.
This should not be surprising — as a loose analogy, one doesn’t expect the
trapezoidal rule to be a good way to integrate very smooth functions.
Of course, non-Bayesian setups can be good in other ways (Jacob et al., 2017; Lie
et al., 2018).
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SPLIT INTEGRATION: COHERENCE

u(t0), . . . ,u(tm−1)

u(tm)

u(tm+1), . . . ,u(t2m)

β1(µ, ·)

β2(µ, ·)

∫ 1/2
0 u(t)dt

∫ 1
1/2 u(t)dt

β3(µ, ·)
∫ 1
0 u(t)dt

Integrate a function over [0, 1] in two steps using nodes 0 ≤ t0 < · · · < tm−1 <
1
2 ,

tm = 1
2 , and

1
2 < tm+1 < · · · < t2m ≤ 1.

Is ■ (
∫ 1
1/2 u(t)dt) independent of ■ (u(t0), . . . ,u(tm−1)) given ■ (u(tm), . . . ,u(t2m))?

For a Brownian motion prior on u, yes. For an integrated BM prior u, no.
So how do we elicit an appropriate prior that respects the problem’s structure, an in
particular incorporates a-priori knowledge from numerical analysis? !?
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SHORT PIPELINES: (RANDOMISED) BAYESIAN INVERSE PROBLEMS I

Bayesian inverse problems are good examples of (short) pipelines of PNMs:

d β1(µ, ·) L( · |d) β2(µ, ·) θ

A BIP is essentially a two-stage computational pipeline in which
β1 converts data d into the likelihood function for parameters θ, and hence
incorporates any forward model such as an O/PDE solver
β2 converts the prior on θ and the likelihood into a joint distribution for (θ,d), then
conditions upon the actual observation — it returns something in PΘ.

Conventionally, β1 is a function from D into RΘ; a bona fide PNM would return a
non-trivial probability distribution in PRΘ , i.e. a randomised likelihood.
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SHORT PIPELINES: (RANDOMISED) BAYESIAN INVERSE PROBLEMS II

Lemma
Under the mild assumption that any randomisation in the forward model is
independent of the prior on θ, a BIP pipeline is always coherent.

Even if some of the ■ method nodes are non-Bayesian, we can assess how close the
overall pipeline is to the Bayesian “ideal”. In fact, some non-Bayesianity of
component methods can confer robustness on the pipeline as a whole (Jacob et al.,
2017; Owhadi et al., 2015).
Lie et al. (2018) analyse, in terms of Lp and Hellinger convergence, how the
stochastic variability in the forward model / likelihood propagates to the
(randomised or marginal) Bayesian posterior on θ.
Alternative approach: assess sufficiency of forward solver accuracy for BIP purposes
using Bayes factors (Capistrán et al., 2016; Christen et al., 2017).
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APPLICATIONS



EXAMPLE: HYDROCYCLONES (OATES ET AL., 2019A)

Hydrocyclones are used in industry as an alternative to
centrifuges or filtration systems to separate fluids of
different densities or particulate matter from a fluid.
Monitoring is an essential control component, but usually
cannot be achieved visually: Gutiérrez et al. (2000) propose
electrical impedance tomography as an alternative.
EIT is an indirect imaging technique in which the
conductivity field in the interior — which correlates with
many material properties of interest — is inferred from
current and voltage boundary conditions.
In its Bayesian formulation, this is a well-posed inverse
problem (Dunlop and Stuart, 2016a,b) closely related to
Calderón’s problem (Uhlmann, 2009). 44/53



COMPLETE ELECTRODE MODEL (CHENG ET AL., 1989; SOMERSALO ET AL., 1992)

The interior conductivity field σ and electrical potential field v and the applied boundary
currents Ii, measured voltages Vi, and known contact impedances ζi are related by

−∇ · σ(x)∇v(x) = 0 x ∈ D;
∫
Ei
σ(x)∂v(x)

∂n̂ du = Ii x ∈ Ei, i = 1, . . . ,m;

v(x) + ζiσ(x)
∂v(x)
∂n̂ = Vi x ∈ Ei; σ(x)∂v(x)

∂n̂ = 0 x ∈ ∂D \
m⋃
i=1

Ei.

Furthermore, we consider a vector
of such models, with multiple
current stimulation patterns, at
multiple points in time, for a
time-dependent field σ(t, x).
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EIT FORWARD PROBLEM

Sampling from the posterior(s) requires repeatedly solving the forward PDE.
We use the probabilistic meshless method (PMM) of Cockayne et al. (2016, 2017):

a Gaussian process extension of symmetric collocation;
a Bayesian PNM for a Gaussian prior and linear elliptic PDEs of this type.

PMM allows us to:
account for uncertainty arising from the PDE having no explicit solution;
use coarser discretisations of the PDE to solve the problem faster while still providing
meaningful UQ for the inverse problem, cf. Capistrán et al. (2016); Christen et al. (2017).
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Figure 3: PMM imposes the PDE at nA interior nodes and BCs at nB boundary nodes.
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EIT INVERSE PROBLEM

For the inverse problem we use a Karhunen–Loève series prior:

logσ(t, x;ω) =
∞∑
k=1

k−αψk(t;ω)ϕk(x),

with the ψk being a-priori independent Brownian motions in t.
Like Dunlop and Stuart (2016a), we assume additive Gaussian observational noise
with variance γ2 > 0, independently on each Ei.
We adopt a filtering formulation, inferring σ(ti, · ; ·) sequentially.
Within each data assimilation step, the Bayesian update is performed by SMC with
P ∈ N weighted particles and a pCN transition kernel (which uses point evaluations
of σ directly and avoids truncation of the KL expansion).
Real-world data obtained at 49 regular time intervals: rapid injection between
frames 10 and 11, followed by diffusion and rotation of the liquids.
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EIT STATIC RECOVERY I

Figure 4: A small number nA + nB = 71 of
collocation points was used to discretise the
PDE, but the uncertainty due to discretisation
was not modelled. The reference posterior
distribution over the coefficients ψk is plotted
(grey) and compared to the approximation to
the posterior obtained when the PDE is
discretised and the discretisation error is not
modelled (blue, ‘Non-PN’). The approximate
posterior is highly biased.
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EIT STATIC RECOVERY II
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Figure 5: Posterior means and standard-deviations for the recovered conductivity field at t = 14.
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EIT DYNAMIC RECOVERY

Figure 6: Posterior distribution over the
coefficients ψk at the final time. A small number
nA + nB = 71 of collocation points was used to
discretise the PDE. The reference posterior
distribution over the coefficients ψk is plotted
(grey) and compared to the approximation to
the posterior obtained when discretisation of
the PDE is not modelled (blue, ‘Non-PN’) and
modelled (orange, ‘PN’).
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EIT COMMENTS

Typically PDE discretisation error in BIPs is ignored, or its contribution is bounded
through detailed numerical analysis. Theoretical bounds are difficult in the
temporal setting due to propagation and accumulation of errors
As a modelling choice, the PN approach eases these difficulties. As with the Painlevé
example, this is a statistically correct implementation of the assumptions, but it is
(at present) costly. 3/7

Furthermore, Markov temporal evolution of the conductivity field was assumed; this
is likely incorrect, since time derivatives of this field will vary continuously. Even
a-priori knowledge about the spin direction is neglected at present. 7

Again, we see a need for priors that are ‘physically reasonable’ and
statistically/computationally appropriate. !?
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CLOSING REMARKS



FURTHER DIRECTIONS / THINGS TO DO

Aside from obvious improvements to computational cost and applications…

The analysis of PNM pipelines uses directed acyclic graphs, i.e. excludes adaptivity.
There are some recent advances in this direction for quadrature (Jagadeeswaran
and Hickernell, 2019); new project starting soon for PDEs.
Related question: automatisation of prior specification? Numerical analysis may be
an ideal playground for empirical Bayesian methods.
Questions of geometric measure theory — continuity of disintegrations?
Connections to category-theoretic interpretations of probability and probabilistic
functional programming languages (Giry, 1982; …; Fritz, 2019; Parzygnat, 2020)?
If classical NMs correspond to maximum likelihood estimators, then point
estimators for BPNMs are MAP estimators — connections to modern theory
non-parametric MAP estimators (Dashti et al., 2013; Lie and Sullivan, 2018), and
modern optimisation methods for finding them (DNNs?)? 52/53



CLOSING REMARKS

Numerical methods can be characterised in a Bayesian fashion, distinct from ACA. 3
BPNMs can be composed into pipelines, e.g. for inverse problems. 3

Bayes’ rule as disintegration→ (expensive!) numerical implementation. 3/7

Lots of room to improve computational cost and bias. !?
Cost-accuracy tradeoff when leaving the “Bayesian gold standard”. 3

How to choose/design an appropriate (numerically-analytically right) prior? !?

Foundations: Cockayne et al. (2019) arXiv:1702.03673
Industrial applications: Cockayne et al. (2019, §6.3) & Oates et al. (2019a) arXiv:1707.06107
History: Oates and Sullivan (2019) arXiv:1901.04457
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OPTIMAL INFORMATION: AC 6= BPN!

Theorem (AC 6= BPN in general; Oates et al. (2019b))
If U can be partitioned into three sets of positive probability, then there exists a choice
of QoI and loss so that optimal information for BPNM and AC differ.

Example (AC 6= BPN in general; Oates et al. (2019b))
Decide whether or not a card drawn fairly at random is ©, incurring unit loss if you
guess wrongly; can choose to be told whether the card is red (Y1) or is non-¨ (Y2).

U = {¨,©,ª,«} µ = UnifU Q = {0, 1} ⊂ R

Y1 = {0, 1} Y1(u) = I[u ∈ {©,ª}] Q(u) = I[u = ©]

Y2 = {0, 1} Y2(u) = I[u ∈ {©,ª,«}] L(q,q′) = I[q 6= q′]

Which information operator, Y1 or Y2, is better? (Note that eWC(Yi,B) = 1 for all
deterministic b!)
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)
eAC(Y1, 0)= 1

4

(
0 + 1 + 0 + 0

)
= 1

4

eAC(Y1, id) = 1
4

(
0 + 0 + 1 + 0

)
= 1

4

eAC(Y2,B) = 1
4

(
L(B(¨), 0) + L(B(¬¨), 1) + L(B(¬¨), 0) + L(B(¬¨), 0)

)
eAC(Y2, 0)= 1

4

(
0 + 1 + 0 + 0

)
= 1

4

eBPN(Y1) = 1
4

(
EQ♯µ■L( · , 0)+ EQ♯µ■L( · , 1) + EQ♯µ■L( · , 0) + EQ♯µ■L( · , 0)

)
= 1

4

(
(12 · 0 + 1

2 · 0) + (12 · 0 + 1
2 · 1) + (12 · 1 + 1

2 · 0) + (12 · 0 + 1
2 · 0)

)
= 1

4

eBPN(Y2) = 1
4

(
EQ♯µ¨L( · , 0) + EQ♯µ¬¨L( · , 1) + EQ♯µ¬¨L( · , 0) + EQ♯µ¬¨L( · , 0)

)
= 1

4

(
(1 · 0) + (13 · 0 + 1

3 · 1 + 1
3 · 1) + (13 · 1 + 1

3 · 0 + 1
3 · 0) + (13 · 1 + 1

3 · 0 + 1
3 · 0)

)
= 1

3
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