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INTRODUCTION



A ROLE FOR PROBABILITY IN NUMERICS?

“Numerical analysts and statisticians are both in the business of estimating pa-
rameter values from incomplete information. The two disciplines have separately
developed their own approaches to formalizing strangely similar problems and
their own solution techniques; the author believes they have much to offer each
other.”

— F. M. Larkin (1979c)

Thanks to my co-conspirators since 2015: Ben Calderhead, Jon Cockayne, Mark Girolami,
Philipp Hennig, Ilse Ipsen, Hans Kersting, Han Cheng Lie, Chris Oates, Art Owen, Dennis
Prangle, Houman Owhadi, Florian Schäfer, Andrew Stuart, Aretha Teckentrup, Onur
Teymur
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THE CLASSIC TASKS OF NUMERICAL ANALYSIS

Suppose that we have the ability to interrogate/evaluate a function u : [0, 1] → R

pointwise (at finitely many points t1, . . . , tJ in finite time), possibly with evaluation errors.

Tasks that we might be interested in performing — or quantities of interest — include:

quadrature: find q :=
∫ 1
0 u(x)dx;

interpolation: find q : [0, 1] → R such that q(tj) = u(tj) for each j = 1, . . . , J;
approximation: find q : [0, 1] → R such that q(tj) ≈ u(tj) for each j = 1, . . . , J, e.g. the
closest such q to u in some norm;
optimisation: find q ∈ [0, 1] such that u(q) ≤ u(x) for all x ∈ [0, 1];
solution of an ODE with u : [0, 1]×R → R and x0 ∈ R: find q : [0, 1] → R such that
q′(t) = u(t,q(t)) and q(0) = x0.

These are all deterministic problems!
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PROBABILISTIC NUMERICS

The field of probabilistic numerics (PN), loosely speaking, attempts to provide a
statistical treatment of the errors and/or approximations that are made en route to
the output of a numerical method (Hennig et al., 2015; Oates and Sullivan, 2019).
The history of such approaches goes back at least a century.
The last decade has seen a surge of activity here, with simultaneous input from
multiple scientific disciplines: mathematics, statistics, machine learning, and
computer science.
There have been advances on a broad front, with contributions ranging from general
theory-building to practical implementations in real-world problems of interest.
Over the same period, and because of increased interaction among researchers
coming from different communities, the extent to which these developments were —
or were not — presaged by twentieth-century researchers has also come to be
better appreciated.
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HISTORICAL DEVELOPMENTS



POINCARÉ I
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POINCARÉ II

In modern terms, Poincaré (1912, Ch. 25), in his Calcul des Probabilités, considered a
(formal) Gaussian prior distribution on a function f, i.e. a randomised power series

f(x) =
∞∑
k=0

Akxk, Ak ∼ N
(
0, 1√

2hk

)
.

Given n pointwise observations of the values of f, one seeks the probable values of
f(x) for another (not yet observed) value of x.
This analytical treatment predates the first digital multipurpose computers and
rigorous Gaussian measure theory by decades, yet it clearly illustrates a non-trivial
probabilistic perspective on interpolation, a hybrid approach that is entirely in
keeping with Poincaré’s reputation as one of the last universalist mathematicians
(Ginoux and Gerini, 2013).
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ROUND-OFF ERROR

What about probabilistic numerical methods for use on a computer?
The limited nature of the earliest computers led authors to focus initially on the
phenomenon of round-off error (Henrici, 1962; Hull and Swenson, 1966; von
Neumann and Goldstine, 1947), whether of fixed-point or floating-point type,
without any particular statistical inferential motivation; indeed, this aspect is still
alive (Barlow and Bareiss, 1985; Chatelin and Brunet, 1990; Tienari, 1970).
One early, utilitarian viewpoint is that probabilistic models in computation are mere
useful shortcuts, easier to work with than the unwieldy deterministic truth (cf. the
long-time state of a chaotic dynamical system):
“[Round-off errors] are strictly very complicated but uniquely defined number
theoretical functions [of the inputs], yet our ignorance of their true nature is
such that we best treat them as random variables.”

— von Neumann and Goldstine (1947, p. 1027)
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ORDINARY DIFFERENTIAL EQUATIONS

Concerning the numerical solution of ODEs, Henrici (1962, 1963) studied classical
finite difference methods and derived expected values and covariance matrices for
accumulated round-off error, under an assumption that individual round-off errors
can be modelled as independent random variables. (Side note: There are actually
non-IEEE computing paradigms in which is is true by design!)
In particular, given posited means and covariance matrices of the individual errors,
Henrici demonstrated how these moments can be propagated through the
computation of a finite difference method.
In contrast with more modern treatments, Henrici was concerned with the analysis
of an established numerical method and did not attempt to statistically motivate
the numerical method itself.
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SUL′DIN I

One of the earliest attempts to statistically
motivate a numerical algorithm was due to A. V.
Sul′din (1924–1996), working at Kazan State
University in the USSR (Norden et al., 1978;
Zabotin et al., 1996).
After first making contributions to the study of
Lie algebras, towards the end of the 1950s
Sul′din turned his attention to computational
and applied mathematics, and in particular to
probabilistic and statistical methodology.
His work in this direction led to the
establishment of the Faculty of Computational
Mathematics and Cybernetics in Kazan, of which
he was the founding Dean.

Al′bert Valentinovich Sul′din (1924–1996)
© Kazan Federal University, reproduced

with permission.
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SUL′DIN II

Sul′din began by considering the problem of quadrature.
Suppose that we wish to approximate the definite integral

∫ b
a u(t)dt of a function

u ∈ U := C0([a,b];R), the space of continuous real-valued functions on [a,b], under
a statistical assumption that (u(t)− u(a))t∈[a,b] follows a standard Brownian motion
(Wiener measure, µW — every probabilist’s first-choice for “a random continuous
function”).
For this task we receive pointwise data about the integrand u in the form of the
values of u at J ∈ N arbitrarily located nodes t1, . . . , tJ ∈ [a,b], although for
convenience we assume that

a = t1 < t2 < · · · < tJ = b.

In more statistical language, anticipating the terminology of Cockayne et al. (2019a),
our observed data or information concerning the integrand u is y := (tj,u(tj))Jj=1,
which takes values in the space Y := ([a,b]×R)J.
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SUL′DIN III

Since µW is a Gaussian measure and both the integral and pointwise evaluations of u are
linear functions of u, Sul′din (1959, 1960, 1963b) showed by direct calculation that the
quadrature rule B : Y → R that minimises the mean squared error (MSE)

∫
U

∣∣∣∣∣
∫ b

a
u(t)dt− B

(
(tj,u(tj))Jj=1

)∣∣∣∣∣
2

µW(du) (1)

is the classical trapezoidal rule

Btr
(
(tj, zj)Jj=1

)
:=

1
2

J−1∑
j=1

(zj+1 + zj)(tj+1 − tj) = z1
t2 − t1
2 +

J−1∑
j=2

zj
tj+1 − tj−1

2 + zJ
tJ − tJ−1

2 , (2)

i.e. the definite integral of the piecewise linear interpolant of the observed data.

(One derivative smoother⇝ cubic spline quadrature.)
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The estimator of
∫ b
a u(t)dt with minimal MSE under a Brownian motion prior on u given

pointwise evaluations is the trapezoidal rule, the definite integral of the piecewise linear
interpolant of the observed data.
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SUL′DIN IV

Sul′din saw the connection between his methods and statistical regression (Sul′din,
1963a) and conditional probability (Sul′din, 1963c) — but did he consider his work to
be an expression of statistical inference?
Sul′din’s methods were grounded in Hilbert space theory (Sul′din, 1968; Sul′din et al.,
1969), so the underlying mathematics (the linear conditioning of Gaussian measures
on Hilbert spaces) is linear algebra that can be motivated without recourse to
probability.
Sul′din did contribute something novel. Up to this point, the role of statistics in
numerical analysis was limited to providing insight into the performance of a
traditional numerical method. The 1960s brought forth a new perspective, namely
the statistically-motivated design of numerical methods, as laid out in his 1969
habilitation thesis.
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LARKIN I

On the other side of the Iron Curtain, between
1957 and 1969, Frederick Michael (“Mike”) Larkin
(1936–1982) worked for the UK Atomic Energy
Authority in its laboratories at Harwell and
Culham, as well as working for two years at Rolls
Royce.
Following a parallel path to that of Sul′din, over
the next decade Larkin would further blend
numerical analysis and statistical thinking
(Kuelbs et al., 1972; Larkin, 1969, 1972, 1974,
1979b,a,c), arguably laying the foundations on
which modern PN would be developed.

Frederick Michael Larkin (1936–1982)
© (Larkin et al., 1967, reproduced with

permission).
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LARKIN II

At Culham, Larkin worked on building some of the first graphical calculators, called
GHOST (short for graphical output system) and GHOUL (graphical output language)
— perhaps a motivation for seeking a richer description of numerical error.
The perspective developed by Larkin was fundamentally statistical and, in modern
terminology, the probabilistic numerical methods he developed would be described
as Bayesian — though Larkin used the term relative likelihood for the prior.
Larkin’s perspective on quadrature: consider the Wiener measure as a prior, the
information (tj,u(tj))Jj=1 as (noiseless) data, and output the posterior marginal for∫ b
a u(t)dt — what we would now recognise as a probabilistic numerical method:
“Among other things, this permits, at least in principle, the derivation of joint
probability density functions for [both observed and unobserved] functionals on
the space and also allows us to evaluate confidence limits on the estimate of a
required functional (in terms of given values of other functionals).” — Larkin
(1972)

14/50



LARKIN III

Sul′din describes the trapezoidal rule Btr as a frequentist point estimator obtained
from minimising the MSE (1), which “just happens” to produce an unbiased
estimator with variance 1

12
∑J−1

j=1(tj+1 − tj)3.
(Hence, the statistically optimal set of quadrature nodes is evenly spaced.)
Larkin sees the normal distribution

N

(
Btr
(
(tj, zj)Jj=1

)
,
1
12

J−1∑
j=1

(tj+1 − tj)3
)

(3)

on R as the measure-valued output of a probabilistic quadrature rule, of which
Btr
(
(tj, zj)Jj=1 is a convenient point summary. The technical development in this

pioneering work made fundamental contributions to the study of Gaussian
measures on Hilbert spaces (Kuelbs et al., 1972; Larkin, 1972).
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LARKIN IV

Larkin moved to Canada in 1969 to Queen’s University in Kingston, Ontario. He
received tenure in 1977 and was promoted to full professor in 1980.
“He worked in isolation at Queen’s in that few graduate students and fewer fac-
ulty members were aware of the nature of his research contributions to the field.
[…] Michael pioneered the idea of using a probabilistic approach to give an alter-
native local approximation technique. In some cases this leads to the classical
methods, but in many others leads to new algorithms that appear to have prac-
tical advantages over more classical methods. This work has finally begun to
attract attention and I expect that the importance of his contribution will grow
in time.”

— Queen’s University at Kingston (11 Feb. 1982)
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SUL′DIN↔ LARKIN?

Sul′din and Larkin seem to have been working in parallel, with similar probabilistic
perspectives on numerics, but limited to a Gaussian setting. It would not have been
easy for Larkin and Sul′din to be conversant with each other’s work (Hollings, 2016).
At least by 1972 (Larkin, 1972), Larkin was aware of and cited Sul′din’s work on
minimal variance estimators for the values of linear functionals on Wiener space
(Sul′din, 1959, 1960), but apparently did not know of Sul′din’s 1969 habilitation thesis,
which laid out a broader agenda for the role of probability in numerics.
Soviet authors knew of Sul′din’s influence on e.g. U. Grenander and W. Freiberger at
Brown University, but make no mention of Larkin (Norden et al., 1978).
Their ideas were ahead of their time: given the limited computational resources
available at even cutting-edge facilities in the 1960s, the computational power
needed to make PN a reality simply did not exist.1

1To first approximation, a single modern laptop has a hundred times the computing power of all five
then-cutting-edge IBM System/360 Model 75J mainframe computers used for the ground support of the
Apollo missions (Manber and Norvig, 2012).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) I

The average-case analysis (ACA) of numerical methods built on the work of
Kolmogorov (1936) and Sard (1963).
In ACA the performance of a numerical method is assessed in terms of its average
error with respect to a probability measure over the problem set; a prime example is
univariate quadrature with the average quadratic loss (1) given earlier.
A traditional (deterministic) NM can also be regarded as a statistical decision rule
and the probability measure used in ACA can be used to instantiate the Bayesian
decision-theoretic framework (Berger, 1985). The average error is then the expected
loss a.k.a. the risk. ACA is mathematically equivalent to Bayesian decision theory —
restricted to the case of an experiment that produces a deterministic dataset
(Kimeldorf and Wahba, 1970a,b; Parzen, 1970; Larkin, 1970).
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OPTIMAL NUMERICAL METHODS ARE BAYES RULES (1980–1990) II

What about optimality of numerical methods, i.e. designs for data acquisition that
yield minimal MSE among all possible designs of a given class, e.g. maximum
number of function evaluations?
Average-case optimal methods are Bayes rules or Bayes acts in the
decision-theoretic context. Kadane and Wasilkowski (1985) showed that ACA-optimal
methods coincide with (non-randomised) Bayes rules when the probability measure
used to define the MSE is the Bayesian prior.
Recently it has become clear that ACA optimality and the optimality of Bayesian
inferential methods differ in general (Cockayne et al., 2019a; Oates et al., 2020).
For example, if you’re asked to guess whether or not a randomly-drawn card from a
standard 52-card deck is ©, out of the four equiprobable suits {¨,©,ª,«}, ACA
regards the information/questions “red or not?” and ”¨ or not?” as equally optimal,
whereas Bayesianity strictly prefers the 50-50 question.
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INFORMATION-BASED COMPLEXITY

Information-based complexity (IBC) (Novak, 1988; Traub et al., 1983; Traub and
Woźniakowsi, 1980) developed simultaneously with ACA, with the aim of relating the
computational complexity and optimality properties of algorithms to the available
information on the unknowns.
For example, Smale (1985) compared the accuracies (with respect to mean absolute
error) for a given cost of the Riemann sum, trapezoidal, and Simpson quadrature
rules; Smale (1985) also considered root-finding, optimisation via linear
programming, and solving systems of linear equations.
Bayesian quadrature was again discussed in detail by Diaconis (1988), who repeated
Sul′din’s observation that the posterior mean for

∫ b
a u(t)dt under the Wiener

measure prior is the trapezoidal method, which is a ACA-optimal.
Diaconis posed a further question: can other numerical methods for other tasks be
similarly recovered as Bayes rules in a decision-theoretic framework? For linear
cubature methods, a positive and constructive answer was recently provided by
Karvonen et al. (2018), but the general question remains open. 20/50



RESURGENCE IN THE 1990S I

Research interest in PN was revived by contributions from on quadrature (Minka,
2000; O’Hagan, 1991; Rasmussen and Ghahramani, 2003), each to a greater or lesser
extent a rediscovery of earlier work due to Larkin (1972). In each case the algorithmic
output was considered to be a probability distribution over the quantity of interest.
The 1990s saw an expansion in the PN agenda, first with early work on an area that
was to become Bayesian optimisation (Močkus, 1975, 1977, 1989).
Skilling (1992) presented a novel (partially) Bayesian perspective on the numerical
solution of ODE initial value problems of the form

u′(t) ≡ du
dt = f(t,u(t)) t ∈ [0, T],

u(0) = u0.
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RESURGENCE IN THE 1990S II

Skilling (1992) considered, e.g. the role of regularity assumptions on f, prior and
likelihood choice, and sampling strategies.
Skilling himself considered his then-new explicit emphasis on a Bayesian statistical
approach to be quite natural:
“This paper arose from long exposure to Laplace/Cox/Jaynes probabilistic rea-
soning, combined with the University of Cambridge’s desire that the author teach
some (traditional) numerical analysis. The rest is common sense. […] Simply,
Bayesian ideas are ‘in the air’.”

— Skilling (1992)
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NEW MOTIVATION: UNCERTAINTY QUANTIFICATION

The last two decades have seen an explosion of interest in uncertainty quantification
(UQ) for complex systems (Le Maître and Knio, 2010; Smith, 2014; Sullivan, 2015):

“UQ studies all sources of error and uncertainty, including the following: sys-
tematic and stochastic measurement error; ignorance; limitations of theoretical
models; limitations of numerical representations of those models; limitations of
the accuracy and reliability of computations, approximations, and algorithms;
and human error. A more precise definition is UQ is the end-to-end study of the
reliability of scientific inferences.”

— U.S. Department of Energy (2009, p. 135)

Since 2010, perhaps stimulated by this activity in the UQ community, a perspective on PN
has emerged that sees PN part of UQ (broadly understood) and should be performed
with a view to propagating uncertainty in computational pipelines.
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PN ADVANCES ON A BROAD FRONT (2010–) I

Quadrature: Briol et al. (2019); Gunter et al. (2014); Karvonen et al. (2018); Oates et al.
(2017); Osborne et al. (2012a,b); Särkkä et al. (2016); Xi et al. (2018); Ehler et al. (2019);
Jagadeeswaran and Hickernell (2019); Karvonen et al. (2019a,b).
Optimisation: Chen et al. (2018); Snoek et al. (2012), including probabilistic
perspectives on quasi-Newton methods (Hennig and Kiefel, 2013) and line search
methods (Mahsereci and Hennig, 2015).
Numerical linear algebra: Bartels and Hennig (2016); Cockayne et al. (2019b); Hennig
(2015); Bartels et al. (2019) have approached the solution of a large linear system of
equations as a statistical learning task and developed probabilistic alternatives to
the classical conjugate gradient method.
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PN ADVANCES ON A BROAD FRONT (2010–) II

ODEs: approaches based on Gaussian filtering (Kersting and Hennig, 2016; Schober
et al., 2014, 2018; Tronarp et al., 2019) and perturbation of dynamics and time steps
(Abdulle and Garegnani, 2020; Chkrebtii et al., 2016; Conrad et al., 2017; Kersting et al.,
2020; Teymur et al., 2018, 2016).

A key result is the Bayesian optimality of evaluating f according to the classical
Runge–Kutta scheme, and numerical-analysis-style convergence guarantees are
being supplied (Conrad et al., 2017; Schober et al., 2018; Teymur et al., 2018; Lie et al.,
2019; Kersting et al., 2020).

Many applications here arise from machine learning algorithms whose ideal
learning dynamics are ODEs in extremely high dimension (in both unknown
parameters and training data) — the ideal vector field is subject to severe
approximation, e.g. through random mini-batching, and fine time steps are
impractical.
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PN ADVANCES ON A BROAD FRONT (2010–) III

PDEs: resent research includes (Owhadi, 2015; Chkrebtii et al., 2016; Cockayne et al.,
2016, 2017), with these contributions making substantial use of RKHS structure and
Gaussian processes.

There are also recent statistical interpretations of finite element methods (Duffin
et al., 2021; Girolami et al., 2021), in which non-conforming elements and “variational
crimes” (Strang, 1972) correspond to misspecification of the statistical model.

The probabilistically-motivated theory of gamblets for PDEs (Owhadi, 2017; Owhadi
and Scovel, 2017a; Owhadi and Zhang, 2017) has gone hand-in-hand with the
development of fast solvers for structured matrix inversion and approximation
problems (Schäfer et al., 2021; Yoo and Owhadi, 2019) — inversion of a dense n× n
matrix in O(npolylogn) complexity.
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PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS I

Optimal approximation using splines was applied by Schoenberg (1965, 1966) and
Karlin (1969, 1971, 1972, 1976) in the late 1960s and early 1970s to the linear problem
of quadrature, and Larkin (1974) cites Karlin (1969) on this point.

However, the works cited above were not concerned with randomness and
equivalent probabilistic interpretations were not discussed; in contrast, the
Bayesian interpretation of spline approximation was highlighted by Kimeldorf and
Wahba (1970a).

27/50



PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS II

The experimental design literature of the late 1960s and early 1970s, including a
sequence of contributions from Sacks and Ylvisaker (1968, 1970a,b, 1966), considered
optimal selection of a design 0 ≤ t1 < t2 < · · · < tJ ≤ 1 to minimise the covariance of
the best linear estimator of β given discrete observations of stochastic process

Y(t) =
m∑
i=1

βiϕi(t) + Z(t),

where Z is a stochastic process with E[Z(t)] = 0 and E[Z(t)2] < ∞, based on the
observed data {(tj, Y(tj))}Jj=1.
The mathematical content of these works concerns optimal approximation in
RKHSs, e.g. Sacks and Ylvisaker (1970a, p. 2064, Theorem 1); we note that Larkin (1970)
simultaneously considered optimal approximation in RKHSs. However, the extent to
which probability enters these works is limited to the measurement error process Z.
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PARALLEL DEVELOPMENTS IN MATHEMATICAL STATISTICS III

The emulation of black-box functions, in the late 1970s and 1980s (O’Hagan, 1978;
Sacks et al., 1989), provided Bayesian and frequentist statistical perspectives
(respectively) on interpolation of a black-box function based on a finite number of
function evaluations.
This literature did not present interpolation as an exemplar of other more
challenging numerical tasks, such as the solution of differential equations, which
could be similarly addressed but rather focused on the specific problem of
black-box interpolation in and of itself.
Sacks et al. (1989) cite Sul′din but not Larkin. The challenges of proposing a suitable
stochastic process model for a deterministic function are discussed by Sacks et al.
(1989) and Currin et al. (1991).
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CONCEPTUAL EVOLUTION — A SUMMARY

1. In the traditional setting of numerical analysis, c. 1950, all objects and operations
are seen as being strictly deterministic. These deterministic objects are sometimes
exceedingly complicated, to the extent that they may be treated as being stochastic.

2. Sard and Sul′din consider the questions of optimal performance of a numerical
method in, respectively, the worst-case and the average-case context. Some of the
average-case performance measures amount to variances of point estimators but
are not viewed as such; probabilistic aspects are not a motivating factor.

3. Larkin’s innovation, 1960s–1970s, is to formulate numerical tasks in terms of a joint
distribution over latent quantities and quantities of interest; the quantity of interest
is a stochastic object using a point estimator accompanied by a credible interval.

4. The fully modern viewpoint, circa 2019, is to explicitly think of the output as a
probability measure to be realised, sampled, and possibly summarised.
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BAYESIAN PROBABILISTIC NUMERICAL
METHODS COME INTO FOCUS



FOUNDATIONS FOR PNMS AND BAYESIAN PNMS I

A recent research direction, which provides formal foundations for the approach
pioneered by Larkin, is to interpret both traditional numerical methods and
probabilistic numerical methods as particular solutions to an ill-posed inverse
problem (Cockayne et al., 2019a).

Given that the latent quantities involved in numerical tasks are frequently functions,
this development is in accordance with recent years’ interest in non-parametric
Bayesian inversion in infinite-dimensional spaces (Stuart, 2010).
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NUMERICAL METHODS I

From the point of view of Cockayne et al. (2019a), which echoes IBC and inverse problem
theory (Stuart, 2010), the common structure of numerical tasks such as quadrature,
optimisation, and the solution of an ODE or PDE, is the following:

two known spaces: U , where the unknown latent variable lives, and Q, where the
quantity of interest lives;
and a known function Q : U → Q, a quantity-of-interest function;

and the traditional role of the numerical analyst is to select/design

a space Y , where data about the latent variable live;
and two functions: Y : U → Y , an information operator that acts on the latent
variable to yield information, and a numerical method B : Y → Q such that B◦Y ≈ Q.
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NUMERICAL METHODS II

E.g. Gaussian quadrature asks that the residual operator R := B ◦ Y− Q vanish on a
large enough finite-dimensional subspace of U .
Worst-case analysis asks that R be small in the supremum norm (Sard, 1949).
ACA asks that R be small in some integral norm against a probability measure on U .

In the chosen sense, “good” NMs make the following diagram approximately commute:

U Y //

Q
&&MM

MMM
MMM

MMM
MM Y

B
��
�
�
�

Q

(4)

A statistician might say that a deterministic NM B : Y → U uses observed data y := Y(u)
to give a point estimator B(y) ∈ Q for a quantity of interest Q(u) ∈ Q derived from a
latent variable u ∈ U .
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CANONICAL EXAMPLE: UNIVARIATE QUADRATURE

Consider, given nodes a ≤ t1 < · · · < tJ ≤ b,

U := C0([a,b];R),

Q(u) :=
∫ b

a
u(t)dt ∈ Q := R,

Y(u) := (tj,u(tj))Jj=1 ∈ Y := ([a,b]×R)J.

Some but not all quadrature methods B : Y → Q construct an estimate of u and then
exactly integrate this estimate; Gaussian quadrature does this by polynomially
interpolating the observed data Y(u); the vanilla Monte Carlo estimate,

BMC
(
(tj, zj)Jj=1

)
=
1
J

J∑
j=1

zj,

forgets the evaluation locations tj and uses only the values zj := u(tj) of u.
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PROBABILISTIC NUMERICAL METHODS I

Let U , Y , and Q be measurable spaces, let Y and Q be measurable maps, and let PU etc.
denote the corresponding sets of probability distributions on these spaces. Let
Q♯ : PU → PQ denote the push-forward2 of the map Q, and define Y♯ etc. similarly.

Definition 1 (Cockayne et al., 2019a, Section 2)
A probabilistic numerical method for the estimation of a quantity of interest Q
consists of an information operator Y : U → Y and a map β : PU × Y → PQ, the latter
being termed a belief update operator.

I.e., given a belief µ about u, β(µ, ·) converts data y ∈ Y about u into a belief
β(µ, y) ∈ PQ about Q(u), as illustrated by the dashed arrow:

PU
Y♯

//

Q♯
&&NN

NNN
NNN

NNN
NN PY

B♯
��

Y

β(µ, ·)
xxq q q q q q q

B
��

PQ Q
δ

oo

(5)

2I.e. Q♯µ(S) = µ(Q−1(S)) for all measurable S ⊆ Q
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PROBABILISTIC NUMERICAL METHODS II

Some PNMs β have point estimators (e.g. mean, median, or mode) that are closely
related to standard deterministic numerical methods B. This aspect is present in
works of Schober et al. (2014), who consider probabilistic ODE solvers with
Runge–Kutta schemes as their posterior means, and Cockayne et al. (2016, 2017), who
consider PDE solvers with the symmetric collocation method as the posterior mean.
Another desideratum for a PNM β is that the spread (e.g. the variance) of the
distributional output should fairly reflect the accuracy of the approximation of the
quantity of interest. In the statistics literature this amounts to a deside for credible
intervals to be well calibrated (Robins and van der Vaart, 2006; Cockayne et al., 2020).
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BAYESIAN PNMS I

Diagram (4), when it commutes, characterises the “ideal” classical numerical method B;
there is, as yet, no closed loop in the PNM diagram

PU
Y♯

//

Q♯
&&NN

NNN
NNN

NNN
NN PY

B♯
��

Y

β(µ, ·)
xxq q q q q q q

B
��

PQ Q
δ

oo

which we would need in order to describe an “ideal” PNM β. This missing map here is
intimately related to the notion of a Bayesian PNM (Cockayne et al., 2019a).

Given a prior belief expressed as a probability distribution µ ∈ PU and the information
operator Y : U → Y , a Bayesian practitioner has a privileged map from Y into PU to add
to diagram (5), i.e. conditioning.
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BAYESIAN PNMS II

Bayesian conditioning maps any possible value y ∈ Y of the observed data to the
corresponding conditional distribution µy ∈ PU for u given y. A Bayesian has no choice in
her/his belief β(µ, y) about Q(u): it must be nothing other than the image under Q of µy.
Definition 2
A probabilistic numerical method is said to be Bayesian for µ ∈ PU if,

β(µ, y) = Q♯µ
y for Y♯µ-almost all y ∈ Y .

In this situation µ is called a prior (for u) and β(µ, y) a posterior (for Q(u)).

In other words, being Bayesian means that the following diagram commutes:

PU

Q♯
''NN

NNN
NNN

NNN
NN Y

y7→β(µ,y)
xxq q q q q q q

y7→µy
oo

PQ

(6)
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BAYESIAN PNMS III

A Bayesian PNM need not actually calculatesµy and then compute the push-forward;
we demand only that the output of the PNM is equal to Q♯µ

y.
Being Bayesian is specific to the quantity of interest Q — a PNM β(µ, ·) can be
Bayesian for some priors µ yet be non-Bayesian for other choices of µ.
Interestingly, about half of the papers published on PN can be viewed as being (at
least approximately) Bayesian.
A key advantage of Bayesian PNMs is that they are closed under composition. For
non-Bayesian PNMs it is unclear how these can/should be combined, but we note
an analogous discussion of statistical “models made of modules” in the recent work
of Jacob et al. (2017): strictly Bayesian models can be brittle under model
misspecification, whereas non-Bayesianity confers additional robustness.
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A TECHNICALITY

The conditioning operation y 7→ µy is interpreted in the sense of a disintegration (Chang
and Pollard, 1997); this is needed in order to make rigorous sense of the operation of
conditioning on the µ-negligible event that Y(u) = y. Thus,

for each y ∈ Y , µy ∈ PU is supported only on those values of u compatible with the
observation Y(u) = y, i.e. µy({u ∈ U | Y(u) 6= y}) = 0;
for any measurable set E ⊆ U , y 7→ µy(E) is a measurable function from Y into [0, 1]
satisfying the reconstruction property, or law of total probability,

µ(E) =
∫
Y
µy(E) (Y♯µ)(dy).

Under mild conditionssuch a disintegration always exists, and is unique up to
modification on Y♯µ-null sets.
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KERNEL QUADRATURE AS A BPNM; LARKIN, 1972 I

Take a Gaussian distribution µ on U := C0([a,b];R), with mean function m : [a,b] → R

and covariance function k : [a,b]2 → R. Then, given the data

y = (tj, zj)Jj=1 ≡ (tj,u(tj))Jj=1,

the disintegration µy is again a Gaussian on C0([a,b];R) with mean and covariance

my(t) = m(t) + kT(t)>k−1TT (zT −mT), (7)
ky(t, t′) = k(t, t′)− kT(t)>k−1TT kT(t

′), (8)

where kT : [a,b] → RJ, kTT ∈ RJ×J, zT ∈ RJ, and mT ∈ RJ are given by

[kT(t)]j := k(t, tj), [kTT]i,j := k(ti, tj),
[zT]j := zj ≡ u(tj), [mT]j := m(tj).
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KERNEL QUADRATURE AS A BPNM; LARKIN, 1972 II

Bayesian PNM output β(µ, y) = Q♯µ
y = N (my, (σy)2) with

my =

∫ b

a
m(t)dt+

[∫ b

a
kT(t)dt

]>
k−1TT (zT −mT),

(σy)2 =

∫ b

a

∫ b

a
k(t, t′)dtdt′ −

[∫ b

a
kT(t)dt

]>
k−1TT

[∫ b

a
kT(t′)dt′

]
.

From a practical perspective, k is typically taken to have a parametric form kθ and the
parameters θ are adjusted in a data-dependent manner, for example to maximise the
marginal likelihood of the information y under the Gaussian model.

For the Brownian covariance kernel k(t, t′) = min(t, t′), the posterior Q♯µ for
∫ b
a u(t)dt is

given by Larkin’s trapezoidal rule, the variance of which is clearly minimised by an
equally-spaced point set {tj}Jj=1. See O’Hagan (1991) for variance minimisation for more
general kernels k.
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BPNMS FOR PDES

For PDEs that lack unique solutions, the Bayesian approach offers an attractive
selection mechanism (Cockayne et al., 2019a).
In the absence of any helpful structure, the computational implementation boils
down to a statistical sampling problem. In this numerical disintegration approach,
one enforces the PDE more strongly while sending a tempering parameter δ → 0.
Example: Bayesian solution of Painlevé’s first transcendental

u′′(x)− u2(x) = −x + boundary conditions

with a centred Gaussian prior.

0 2 4 6 8 10

t

−4

−3

−2

−1

0

1

2

3

4

x
(t

)

δ = 1.0e+ 01

0 2 4 6 8 10

t

−4

−3

−2

−1

0

1

2

3

4

x
(t

)

δ = 5.5e− 01

0 2 4 6 8 10

t

−4

−3

−2

−1

0

1

2

3

4

x
(t

)

δ = 1.0e− 04

43/50



DISCUSSION AND OUTLOOK



KILLER APPS I

Greatest area of success to date is Bayesian global optimisation (Snoek et al., 2012;
The MathWorks Inc.; Acerbi, 2018; Paul et al., 2018), a high-profile example being
Bayesian optimisation in AlphaGo (Chen et al., 2018).
Other applications of probabilistic methods for cubature in computer graphics
(Marques et al., 2013; Xi et al., 2018) and tracking (Prüher et al., 2018), as well as
applications of probabilistic numerical methods in medical tractography (Hauberg
et al., 2015) and nonlinear state estimation in an industrial context (Oates et al.,
2019).
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KILLER APPS II

It has been suggested that PN is likely to experience the most success in addressing
numerical tasks that are fundamentally difficult (Owen, 2019). One area that we
highlight, in particular, in this regard is the solution of nonlinear PDEs that are
prone to non-uniqueness of solutions. For some problems, physical reasoning may
be used to choose among the various solutions, from the probabilistic or statistical
perspective lack of uniqueness presents no fundamental philosophical issues: the
multiple solutions are simply multiple maxima of a likelihood, and the prior is used
to select among them; see e.g. Cockayne et al. (2019a).
It has also been noted that the probabilistic approach provides a promising
paradigm for the analysis of rounding error in mixed-precision calculations, where
classical bounds “do not provide good estimates of the size of the error, and in
particular […] overestimate the error growth, that is, the asymptotic dependence of
the error on the problem size” (Higham and Mary, 2019).
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ADAPTIVE BAYESIAN PNMS

The discussion above did not cover adaptive PNMs, e.g. sequential selection of
integration nodes. This is a major open area.
In the deterministic world, for linear problems, adaptive methods (e.g., in
quadrature, sequential selection of the notes tj) do not outperform non-adaptive
methods according to certain performance metrics such as worst-case error
(Woźniakowski, 1985, Section 3.2).
However, adaptation is known to be advantageous in general for nonlinear
problems (Woźniakowski, 1985, Section 3.8).
How this interacts with Bayesianity and the composition of PNMs into pipelines is
still open, as are connections to empirical Bayes methods (Carlin and Louis, 2000;
Casella, 1985). Some early work in this direction includes Schober et al. (2018) and
Jagadeeswaran and Hickernell (2019).
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AUTOMATED DESIGN OF PNMS

The IBC literature intensively studies (i) optimal information operators Y for a given
task, and (ii) optimal numerical method B for a given task, given information of a
known type (Traub et al., 1983).
In the statistical literature, there is also a long history of Bayesian optimal
experimental design, in parametric and non-parametric contexts (Lindley, 1956;
Piiroinen, 2005).
Open challenge: can these principles can be used to design optimal numerical
methods automatically (rather than by inspired guesswork on the mathematician’s
part, à la Larkin)? Cf. the automation of statistical reasoning envisioned by Wald and
subsequent commentators on his work (Owhadi and Scovel, 2017b).
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NUMERICAL ANALYSTS V. STATISTICIANS I

A major challenge is the interdisciplinary gap between numerical analysts and
statisticians.
Caricature: A numerical analyst will quite rightly point out that almost all problems
have numerical errors that are provably non-Gaussian, not least because s/he can
exhibit a rigorous a-priori or a-posteriori error bound. Therefore, to the numerical
analyst it seems wholly inappropriate to resort to Gaussian models for any purpose
at all; these are often the statistician’s first models of choice, though they should
not be the last.
Numerical analysts are happier to discuss the modelling of errors than the latent
quantities which they regard as fixed, whereas statisticians seems to have the
opposite preference.
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NUMERICAL ANALYSTS V. STATISTICIANS II

The numerical analyst also wonders why, in the presence of an under-resolved
integral, the practitioner does not simply apply an adaptive quadrature scheme and
run it until an a posteriori global error indicator falls below a pre-set tolerance.
A way forward: a more careful statement of the approach being taken to address the
numerical task, e.g. variable precision, noisiness of output, …
The meeting ground for the numerical analysts and statisticians, and the critical
arena of application for PN, consists of problems that cannot be run to convergence
more cheaply than quantifying the uncertainties of the coarse solution, cf. the
tradeoff in multilevel methods (Giles, 2015).
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CLOSING REMARKS

Probabilistic approaches to numerical tasks have a long history, and keep coming
around, especially as computer power advances.
What appears to be new this time is more engagement between numerical analysts
and statisticians, and computing paradigms that demand the crossover.
Formal structures to describe PNMs and their relationship to (Bayesian) inference
are now established.
Standard libraries/implementations are starting to be developed.
Are PNMs here to stay this time?
“Det er vanskeligt at spaa, især naar det gælder Fremtiden.”

— Danish proverb

Thank You
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