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Motivation

In applications such as the Bayesian approach to inverse problems and the analysis of

transitions of dynamical systems, it is often desirable to summarise a complicated

probability measure µ on a high-dimensional space X by a single point x⋆ ∈ X — a

“point of maximum probability under µ”.

Essentially, we are looking for modes of µ. In the Bayesian context, when µ is the

posterior measure, these are maximum a posteriori (MAP) estimators.

Challenge I — Definition(s)

What does “point of maximum probability under µ” even mean when µ is a measure on a

metric space X , with no uniform reference measure etc.?

Challenge II — Stability

Are such points stable under perturbations of µ, or perturbations of problem data

determining µ (changes of prior, likelihood, data, discretisation. . . )?
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Some notation

Throughout, X will be a separable metric space— occasionally something better, such as

a separable Banach or Hilbert space.

Br (x) := {y ∈ X | d(x , y) ⩽ r} denotes the closed ball of radius r ⩾ 0 centred on x ∈ X .

P(X ) denotes the set of all probability measures on the Borel σ-algebra of X .

(Separability ensures that every µ ∈ P(X ) has a non-empty support, i.e. there is some

x ∈ X with µ(Br (x)) > 0 for every r > 0, and so Mr := supx∈X µ(Br (x)) > 0.)

Given a positive sequence γ = (γk)k∈N, we have the corresponding weighted ℓp norm and

weighted ℓp space:

∥h∥ℓpγ :=
∥∥(hk/γk)k∈N∥∥ℓp ,

ℓpγ :=
{
h ∈ RN

∣∣(hk/γk)k∈N ∈ ℓp
}
.
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Well-posedness of (Bayesian) inverse problems

In an inverse problem we recover a parameter u ∈ X from observed data y ∈ Y . Such

problems are usually ill posed: the recovered uy ∈ X depends sensitively on y , and this

sensitivity is worse the “nicer” the forward map u 7→ y is (and this is why inverse

problems need to be regularised).

In a Bayesian inverse problem (BIP), the recovery of u from y is expressed in the form

of a posterior probability distribution µy ∈ P(X ).

BIPs are well-posed (Stuart, 2010; . . . ; Sprungk, 2020). The posterior µy is a stable

function of the problem setup — the prior distribution µ0 ∈ P(X ), the observed data

y ∈ Y , and the likelihood model ℓ : X → P(Y ) — with respect to e.g. the Hellinger,

Kullback–Leibler, or Wasserstein distances on P(X ), e.g.

KL(µy∥µy+δy ) ≲ ∥δy∥ (for fixed ℓ and µ0).

Are the MAP estimators, the “most likely points under µy”, also stable?
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Similarity of modes ⇏ similarity of measures

Unfortunately, closeness of probability measures and closeness of their modes are

“orthogonal” questions, even using a strong distance on P(X ) like Kullback–Leibler.

This is the case even for probability measures on R with continuous Lebesgue densities,

for which a mode is easily defined as a maximiser of the density.

Obviously, two measures can have very similar (or even the same) modes and yet be very

different as measures, e.g. N (0, 1) and N (0, 106) or µ(E ) =
∫
E max(0, 1− |x |) dx!

Perhaps if a sequence of probability measures converges “strongly enough”, then their

modes will also converge?

Unfortunately, this is not the case.
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Similarity of measures ⇏ similarity of modes

Consider, for t ∈ R, µ(t) ∈ P(R) with Lebesgue density

ρ(t)(x) :=
(1 + t) exp(−1

2(x − r)2) + (1− t) exp(−1
2(x + r)2)

2
√
2π

.

For t > 0 and for r > 0 large

enough, ρ(±t) has a unique

maximiser at x⋆±t ≈ ±r .

KL(µ(t)∥µ(−t)) ≈ Ct2, and yet

their modes are order 1 apart.

This isn’t too bad: The cluster

points of the modes of µ(t) as

t → 0 form the modes of µ(0).
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Similarity of measures ⇏ similarity of modes

Consider, for n ∈ N, µ(n) ∈ P(R) with Lebesgue density

ρ(n)(x) :=
exp

(
−1

2(x − 1)2
)
+ 1[x ⩾ 0]4n2x2 exp(−n2x2)
√
2π +

√
π/n

Each ρ(n) has a unique maximiser

at x⋆n ≈ 1
n .

Pointwise, ρ(n) → ρ(∞), the density

of µ(∞) = N (1, 1).

KL(µ(∞)∥µ(n)) ≈ 1
n

But the maximiser of ρ(∞) is at

x⋆∞ = 1 ̸= limn→∞ x⋆n !
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Ouch.
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A role for Γ-convergence

Evidently, these densities are not converging the “the right way”, and even “strong”

distances on P(X ) like Kullback–Leibler are not the right notion of convergence.

Modes are characterised as maximisers of the density — or minimisers of the negative

log-density.

The well-established notion of Γ-convergence from the calculus of variations (De Giorgi

and Franzoni, 1975), which aims to give conditions for convergence of minimisers of

minimisation problems, would seem to be a natural thing to try.

(And it would be nice not to have to talk about densities, because not every measure has

one. . . )
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Overview

1. Modes, MAP estimators, and Onsager–Machlup functionals

2. Γ-convergence: A capsule summary

3. Γ-convergence of OM functionals

4. Bayesian inverse problems

5. MAP estimation for BIPs

6. Closing remarks
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Modes, MAP estimators, and

Onsager–Machlup functionals



Defining a mode of a measure. 1: Strong modes

There is no such thing as a “Lebesgue-like” uniform reference measure λ on an

infinite-dimensional space X (Sudakov, 1959), so we can’t define a mode of µ as a

maximiser of the density dµ
dλ .

Over the last decade, it has become common to define modes directly using the masses

of metric balls in the small-radius limit (Dashti et al., 2013; Helin and Burger, 2015;

Clason et al., 2019).

Definition 1 (after Dashti et al. (2013))

A strong mode of µ ∈ P(X ) is any x⋆ ∈ X such that

lim
r→0

µ(Br (x
⋆))

Mr
= 1,

where Br (x) := {x ′ ∈ X | d(x , x ′) ⩽ r} and Mr := sup
x∈X

µ(Br (x)).
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Defining a mode of a measure. 2: Weak modes

Note that µ(Br (x
⋆)) /Mr ∈ [0, 1], so

x⋆ is a strong mode ⇐⇒ lim
r→0

µ(Br (x
⋆))

Mr
= 1

⇐⇒ lim inf
r→0

µ(Br (x
⋆))

Mr
⩾ 1

⇐⇒ lim sup
r→0

Mr

µ(Br (x⋆))
⩽ 1.

This motivates another definition:

Definition 2 (after Helin and Burger (2015))

A global weak mode of µ ∈ P(X ) is any x⋆ ∈ X such that

lim sup
r→0

µ(Br (x
′))

µ(Br (x⋆))
⩽ 1 for all x ′ ∈ X .
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Defining a mode of a measure. 3: Minimisers of OM functionals

Definition 3

An Onsager–Machlup (OM) functional for µ ∈ P(X ) is a function Iµ : E → R with

lim
r→0

µ(Br (x))

µ(Br (y))
=

exp(−Iµ(x))

exp(−Iµ(y))
for all x , y ∈ E .

We call E ⊆ X the domain of the OM functional.

OM functionals are at most unique up to addition of constants — this aspect requires

some care, which this presentation will neglect!

If µ ∈ P(Rd) has Lebesgue density ρ, then Iµ := − log ρ is an OM functional for µ.

Any measure admits an OM functional if E is small enough.

Can measures on “large” spaces have OM functionals with large E?

Are minimisers of Iµ “most probable points” under µ? (Cf. Dürr and Bach (1978).)
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The Gaussian OM functional

The prime example of an OM functional is the OM functional of a centred Gaussian

measure µ = N (0,C ) on a separable Hilbert space X .

Here, for simplicity, we assume that the covariance operator C : X → X ,

⟨u,Cv⟩ :=
∫
X
⟨u, x⟩⟨v , x⟩µ(dx)

which is always symmetric and positive semi-definite, is actually positive definite.

In this case, µ has the OM functional Iµ : H(µ) := ranC 1/2 → R

Iµ(u) =
1

2
∥C−1/2u∥2 for u ∈ H(µ).

Furthermore, one can show that, for u /∈ H(µ), limr→0
µ(Br (u))
µ(Br (0))

= 0, so we can sensibly

think of Iµ as taking the value +∞ there.
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A new-ish formal property

We formalise a property used implicitly in e.g. Dashti et al. (2013):

Definition 4

We will say that property M(µ,E ) holds for µ ∈ P(X ) and E ⊆ X if, for some x⋆ ∈ E ,

x ∈ X \ E =⇒ lim
r→0

µ(Br (x))

µ(Br (x⋆))
= 0.

Property M(µ,E ) always holds if E is large enough.

Property M(µ,E ) does not say that µ(X \ E ) = 0!

Property M(µ,E ) does say that points outside E cannot qualify as modes of µ.

Standard example: a Gaussian measure µ = N (0,C ) on an infinite-dimensional Hilbert

space X with infinite-dimensional Cameron–Martin space H(µ) := ranC 1/2 satisfies

property M(µ,H(µ)) and yet has µ(H(µ)) = 0.
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OM functionals, property M, and modes

Lemma 5 (Ayanbayev et al., 2022a, Prop. 4.1)

Let µ have OM functional Iµ : E → R and satisfy property M(µ,E ). Set Iµ(x) := +∞ for

x /∈ E . Then the global weak modes of µ are precisely the global minimisers of

Iµ : X → R := R ∪ {±∞}.

This result gives a rigorous meaning to the claim of Dürr and Bach (1978) that OM

minimisers should be seen as “most likely points” in the sense of global weak modes.

Unfortunately, it is not generally true that strong modes are OM-minimisers, even when

such minimisers exist and property M holds!
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OM functionals, property M, and modes

Example 6

Let µ ∈ P(R) have Lebesgue density ρ := 24
5π2

∑
k∈N ρk , where

ρ0(x) :=
1
4 (|x |

−1/2 − 2)1[− 1
4
, 1
4
]\{0}(x), ρk(x) :=

ρ0(x − k)

k2
+ k2 1[

− 1
2k4

, 1
2k4

](x − k).

1 2 3
x

0

1

2

3

4
(x)

I(x)

The measure µ has OM functional Iµ(x) = 2 log x for x ∈ E = N, this domain cannot be

extended, and property M(µ,N) holds. However, µ has a global weak mode at 1, and this

minimises Iµ, but it is not a strong mode. 15/37



Γ-convergence: A capsule summary



Γ-convergence

Γ-convergence, originating with De Giorgi and Franzoni (1975), is a principal example of

a kind of variational convergence for functionals Fn : X → R.

The idea, under suitable assumptions, is to have a notion of convergence for functionals

so that

Fn
Γ−−−→

n→∞
F =⇒ argmin

X
Fn −−−→

n→∞
argmin

X
F .

i.e. the minimisers of Fn converge to the minimisers of F .

Γ-convergence, and related notions such as Mosco convergence, have met great success in

the study of optimisation problems in general and the calculus of variations in particular.
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Γ-convergence

Definition 7

Given extended-real-valued functions Fn,F : X → R, we say that Fn Γ-converges to F ,

written Fn
Γ−−−→

n→∞
F , if, for every x ∈ X ,

(Γ-lim inf inequality) for every sequence (xn)n∈N converging to x ,

F (x) ⩽ lim inf
n→∞

Fn(xn);

(Γ-lim sup inequality) and there exists a “recovery sequence” (xn)n∈N converging to x

such that

F (x) ⩾ lim sup
n→∞

Fn(xn).
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Pointwise, continuous, uniform and Γ-convergence

Definition 8

For Fn,F : X → R as before, we say that Fn converges continuously to F if, for every

x ∈ X and every neighbourhood V of F (x) in R, there exists N ∈ N and r > 0 such that

(n ⩾ N and d(x ′, x) < r) =⇒ Fn(x
′) ∈ V .

Fn
unif−−−→

n→∞
F Fn

cts−−−→
n→∞

F Fn
Γ−−−→

n→∞
F

Fn
pt−−−→

n→∞
F

if F continuous

\ \

(
Fn

Γ−−−→
n→∞

F and Fn
pt−−−→

n→∞
G
)

=⇒ F ⩽ G .(
Fn

cts−−−→
n→∞

F and Gn
Γ−−−→

n→∞
G
)

=⇒ Fn + Gn
Γ−−−→

n→∞
F + G .
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The fundamental theorem of Γ-convergence

Definition 9

We say that (Fn)n∈N is equicoercive if for all t ∈ R, there exists a compact Kt ⊆ X such

that, for all n ∈ N, F−1
n ([−∞, t]) ⊆ Kt .

Theorem 10 (Fundamental theorem of Γ-convergence; Braides, 2006, Theorem 2.10)

Suppose that Fn,F : X → R are such that Fn
Γ−−−→

n→∞
F and (Fn)n∈N is equicoercive. Then

F has a minimum value and minX F = limn→∞ infX Fn;

if (xn)n∈N is a precompact sequence such that limn→∞ Fn(xn) = minX F , then every limit

of a convergent subsequence of (xn)n∈N is a minimiser of F ; and

if each Fn has a minimiser x⋆n , then every convergent subsequence of (x⋆n )n∈N has as its

limit a minimiser of F .

(The hypotheses of the fundamental theorem can be relaxed somewhat to use only “equi-mild coercivity”.)
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Γ-convergence of OM functionals



Γ-convergence of OM functionals and convergence of modes

We’re in a position to state our first theorem, and it comes almost for free. . .

Theorem 11 (Γ-convergence and equicoercivity imply convergence of modes;

Ayanbayev et al. (2022a, Theorem 4.2))

For n ∈ N ∪ {∞}, let µ(n) ∈ P(X ) have OM functional Iµ(n) : E (n) → R and satisfy property

M(µ(n),E (n)); extend each Iµ(n) to take the value +∞ on X \ E (n). Suppose that the

sequence (Iµ(n))n∈N is equicoercive and Γ-converges to Iµ(∞) . Then, if u(n) is a global weak

mode of µ(n), n ∈ N, every convergent subsequence of (u(n))n∈N has as its limit a global

weak mode of µ(∞).

Proof.

The global weak modes are exactly the minimisers of the extended OM functionals, and the

rest follows from the fundamental theorem of Γ-convergence.
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Γ-convergence of OM functionals and convergence of modes

The pathological examples of non-convergent modes given earlier fall outside the realm of

Theorem 11: the negative log-densities involved converge pointwise but not uniformly,

and indeed do not Γ-converge.

Theorem 11 is very general, and there is no free lunch: one does need to verify

equicoercivity and Γ-convergence for the application at hand.

Let’s examine the Γ-convergence and equicoercivity of the OM functionals of measures

that are often used as priors in BIPs, even though their modes are quite obvious.

This only looks like a trivial exercise: Γ-convergence and equicoercivity of posterior OM

functionals — i.e. for reweightings of these priors — and hence convergence of MAP

estimators, will follow later.

Skip discussion of pseudoinverse square roots ▶

21/37



A digression on pseudoinverses and pseudoinverse square roots

“Everyone knows” that the OM functional of a Gaussian measure is one half the square

of its Cameron–Martin norm.

To make this statement precise, we need to be precise about the inverse square root of its

(possibly indefinite) covariance operator.

Definition 12

For a bounded linear operator A between Hilbert spaces X and Y , the Moore–Penrose

pseudoinverse A† of A is the unique extension of (A|(kerA)⊥)−1 to a (generally unbounded)

linear operator A† : ranA⊕ (ranA)⊥ → X subject to the restriction that kerA† = (ranA)⊥.

For y ∈ ranA⊕ (ranA)⊥,

A†y = argmin
{
∥x∥X

∣∣x minimises ∥Ax − y∥
}
.

In particular, for y ∈ ranA, A†y is the minimum-norm solution of Ax = y .
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A digression on pseudoinverses and pseudoinverse square roots

Definition 13

For a compact SPSD operator C =
∑

n∈N σ2
n en ⊗ en on a Hilbert space X , (en)n∈N being an

orthonormal system in X and σn ⩾ 0 for each n ∈ N, we denote the SPSD operator square

root of C by C 1/2 and furthermore set

C †/2 := (C 1/2)† =
∑

n∈N :σn ̸=0

σ−1
n en ⊗ en.

Note that (C †)1/2 can differ from (C 1/2)† since it may have a smaller domain.
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OM functionals for Gaussian measures

Lemma 14 (Ayanbayev et al., 2022a, Cor. 5.4)

The extended OM functional of µ = N (m,C ) on a separable Hilbert space X is Iµ : X → R,

Iµ(u) :=

1
2

∥∥C †/2(u −m)
∥∥2
X

for u −m ∈ H(µ) = ranC 1/2,

+∞ otherwise,

and property M(µ,m + H(µ)) holds.

Theorem 15 (Γ-convergence and equicoercivity of Gaussian OM functionals;

Ayanbayev et al., 2022a, Thm. 5.5)

Let X be a separable Hilbert space and µ(n) = N (m(n),C (n)), for n ∈ N ∪ {∞}, be Gaussian

measures on X . Then∥∥m(n) −m(∞)
∥∥
X
→ 0 and∥∥C (n) − C (∞)

∥∥
op

→ 0

}
=⇒

{
Iµ(n)

Γ−−−→
n→∞

Iµ(∞) and

(Iµ(n))n∈N is equicoercive.
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Besov measures

Besov priors (Lassas et al., 2009; Dashti et al., 2012; Agapiou et al., 2018) have been

advocated as an extension of Gaussian priors for BIPs.

Besov priors have two key parameters: “smoothness” s ∈ R and “integrability” p ⩾ 1;

for historical reasons to do with connections to PDE theory, there is also a “spatial

dimension” d ∈ N and the quantity s/d occurs often.

The case p = 2 corresponds to Gaussian distributions.

The case p = 1 has been studied for its sparsifying / edge-preserving properties (contrast

with TV regularisation, Lassas and Siltanen (2004)).

Just to keep the notation somewhat under control, this talk will concentrate on the case

p = 1 and study stability w.r.t. smoothness s, but our results do cover general p and a

large class of more general product priors and their perturbations (Ayanbayev et al.,

2022b).
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Besov-1 measures

Let s ∈ R, d ∈ N, η > 0, t := s − d(1 + η).

The parameter s is thought of as a “smoothness parameter” and d as a “spatial

dimension”. The parameter t is “a bit less smooth” than s.

Define γ0 := 1 and γ, δ ∈ RN by

γk := k1−s/d−1/2, δk := k1−t/d−1/2 = k2+η−s/d−1/2, k ∈ N,

and let µk ∈ P(R) for k ∈ N ∪ {0} have the Lebesgue density

dµk

du
(u) =

1

2γ−1
k

exp(−|u/γk |).
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Besov-1 measures

Definition 16 (Sequence space Besov measures and Besov spaces)

We call µ :=
⊗

k∈N µk a (sequence space) Besov measure on RN and write Bs
1 := µ. The

corresponding Besov space is the weighted sequence space (X s
1 , ∥ · ∥X s

1
) := (ℓ1γ , ∥ · ∥ℓ1γ ), i.e.

∥h∥X s
1
:=

∑
k∈N

ks/d−1/2|hk |

One can perform the same construction in any separable Hilbert space instead of

ℓ2 ⊂ RN, considering random expansion w.r.t. a countable complete orthonormal basis.

In the case of L2(T d ;R) with the Fourier basis, X s
1 is the Besov space Bs

11 (hence the

name).
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OM functionals for Besov-1 measures

One thinks of Bs
1 as having a formal Lebesgue density proportional to exp(−∥ ·∥X s

1
) in the

same way that N (0,C ) has a formal density proportional to exp(−1
2∥C

−1/2 · ∥2).
But is this actually true on the level of OM functionals?

Lemma 17 (Support of a Besov-1 measure; Ayanbayev et al., 2022a, Lem. 5.10)

Let µ = Bs
1 be the Besov measure defined above and X = X t

1 = ℓ1δ . Then µ(X ) = 1.

Proposition 18 (OM functional of a Besov-1 measure; Ayanbayev et al., 2022a,

Prop. 5.11)

Let µ = Bs
1 on the space X = X t

1 = ℓ1δ . Then property M(µ,X s
1 ) is satisfied and the OM

functional Iµ : X
t
1 → R of µ is given by

Iµ(u) =

∥u∥X s
1

for u ∈ X s
1 ,

∞ otherwise.
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OM functionals for Besov-1 measures

Theorem 19 (Γ-convergence and equicoercivity of Besov-1 OM functionals; Ayanbayev

et al., 2022a, Thm. 5.13)

Let µ(n) := Bs(n)
1 , n ∈ N ∪ {+∞}, be centered Besov measures such that s(n) → s(∞). Then

there exists n0 ∈ N such that, for each n ⩾ n0, µ
(n)(ℓ1

δ(∞)) = 1 and we therefore consider

these measures on X = X t(∞)

1 = ℓ1
δ(∞) (after dropping the first n0 − 1 measures). Then the

associated OM functionals Iµ(n) = ∥ · ∥
X s(n)
1

: X → R, n ⩾ n0, are equicoercive and

Iµ(n)
Γ−−−→

n→∞
Iµ(∞) .

For emphasis: each of the measures Bs(n)
1 is centred, with the origin being both the mean

and the mode. Convergence of modes is therefore trivial.

However, Γ-convergence of the OM functionals is not trivial — it is essential for the study

of Γ-convergence of posterior OM functionals in the next step.
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A sketch of some generalisations

Besov-p measures with 1 ⩽ p ⩽ 2 and mean m ∈ X

Infinite product of marginal densities ∝ exp(−| uk−mk

γk
|p)

OM functional is ∥u −m∥pX s
p
on m + X t

p , with property M(µ,m + X s
p ). ✓

Γ-convergence and equicoercivity with respect to mean and smoothness. ✓

Cauchy measures

Countable products of marginal densities ∝
(
1 + | uk−mk

γk
|
)−1

.

OM functional is
∑

k log(1 + γ−2
k (uk −mk)) with property M(µ,m + ℓ2γ). ✓

Γ-convergence and equicoercivity with respect to location and scale parameters. ✓

General scaled product measures

Countable products of marginal densities ρk(uu) ∝ ρ0
(
uk−mk

γk

)
, with ρ0 a “nice” reference

density on R

OM functional is more or less what it should be (lower bound is relatively straightforward,

upper bound only in some cases, maximal domain and property M are also tricky. . . ) ≈ ✓

Γ-convergence and equicoercivity with respect to location and scale parameters. ✓
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Bayesian inverse problems



Bayesian inverse problems

An inverse problem consists of the recovery of an unknown u from related observational

data y . In the Bayesian approach to inverse problems (Kaipio and Somersalo, 2005;

Stuart, 2010), these two objects are treated as coupled random variables u and y that

take values in spaces X and Y respectively.

A priori knowledge about u is represented by a prior probability measure µ0 ∈ P(X ) and

one is given access to a realisation y of y . One also posits a likelihood model

ℓ : X → P(Y ).

The solution of the BIP is, by definition, the posterior probability measure µy ∈ P(X ),

i.e. the conditional distribution of u given that y = y , or the disintegration of the joint

distribution µ(du, dy) ∝ µ0(du)ℓ(dy |u) of (u, y) along the y -fibre (Chang and Pollard,

1997).
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Bayesian inverse problems

For simplicity, focus on the case that µy has a density with respect to µ0 of the form

µy (du) ∝ exp(−Φ(u; y))µ0(du).

The potential Φ: X × Y → R encodes both the idealised relationship between the

unknown and the data and statistical assumptions about any observational noise.

Textbook example: X is a separable Hilbert or Banach space of functions, Y = RJ for

some J ∈ N, and that y = O(u) + η for some deterministic observation map O : X → Y

and additive non-degenerate Gaussian noise η ∼ N (0,Cη) that is a priori independent of

u, in which case Φ is the familiar quadratic misfit

Φ(u; y) =
1

2

∥∥C−1/2
η (y −O(u))

∥∥2.
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Bayesian inverse problems

So, on a hand-wavy level, the posterior µy (du) ∝ exp(−Φ(u; y))µ0(du) has a “negative

log-Lebesgue density”

− log ρy (u) = Φ(u; y)︸ ︷︷ ︸
misfit

− log ρ0(u)︸ ︷︷ ︸
regularisation

.

In the case of a Gaussian prior µ0 = N (m0,C0), this is Tikhonov–Philips regularisation:

− log ρy (u) = Φ(u; y) +
1

2
⟨u,C−1

0 u⟩.

This is the connection between the Bayesian viewpoint and the regularised optimisation

viewpoint on inverse problems:

Minimisers of the posterior “negative log-Lebesgue density” ought to be regarded as

“most probable points for µy”.
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MAP estimation for BIPs



Consequences for MAP estimation in BIPs

In view of the earlier discussion, we can be more rigorous in our statements about MAP

estimators.

We want to be able to define “MAP estimator” to mean “global weak mode of the

posterior”. . .

. . . and say that these points are minimisers of the OM functional of the posterior. . .

. . . that the OM functional of the posterior is Φ plus the OM functional of the prior. . .

. . . and that the MAP estimators are stable under suitable continuous convergence /

Γ-convergence / equicoercivity assumptions on Φ and Iµ0 .

And this is indeed what we can show!

Skip the formal statement of the theorem ▶
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Transfer of property M, Γ-convergence, equicoercivity, etc.

Theorem 20 (Ayanbayev et al. (2022a, Theorem 6.1))

For each n ∈ N ∪ {∞}, let µ(n)
0 ∈ P(X ) and let Φ(n) : X → R be locally uniformly

continuous. Suppose that, for each n ∈ N ∪ {∞}

µ(n)(dx) :=
1

Z (n)
e−Φ(n)(x) µ

(n)
0 (dx), Z (n) :=

∫
X
e−Φ(n)(x) µ

(n)
0 (dx) ∈ (0,∞),

and each µ
(n)
0 has an OM functional I

µ
(n)
0

: E (n) → R. Then:

1. Each µ(n) has Iµ(n) := Φ(n) + I
µ
(n)
0

: E (n) → R as an OM functional.

2. Suppose that property M(µ
(n)
0 ,E (n)) holds. Then property M(µ(n),E (n)) also holds, and

the global weak modes of µ
(n)
0 (resp. of µ(n)) are the global minimisers of the extended

OM functional I
µ
(n)
0

: X → R (resp. of Iµ(n) : X → R).

3. If I
µ
(n)
0

Γ−−−→
n→∞

I
µ
(∞)
0

and Φ(n) cts−−−→
n→∞

Φ(∞) as n → ∞, then Iµ(n)
Γ−−−→

n→∞
Iµ(∞) .
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Transfer of property M, Γ-convergence, equicoercivity, etc.

Theorem 20 (Ayanbayev et al. (2022a, Theorem 6.1))

For each n ∈ N ∪ {∞}, let µ(n)
0 ∈ P(X ) and let Φ(n) : X → R be locally uniformly

continuous. Suppose that, for each n ∈ N ∪ {∞}

µ(n)(dx) :=
1

Z (n)
e−Φ(n)(x) µ

(n)
0 (dx), Z (n) :=

∫
X
e−Φ(n)(x) µ

(n)
0 (dx) ∈ (0,∞),

and each µ
(n)
0 has an OM functional I

µ
(n)
0

: E (n) → R. Then:

4. If (I
µ
(n)
0

)n∈N is equicoercive and the functions Φ(n) are uniformly bounded from below by

some constant M ∈ R, then (Iµ(n))n∈N is also equicoercive with respect to the same

representatives of Iµ(n) as for the Γ-convergence.

5. Under the assumptions of parts 2–4, the cluster points as n → ∞ of the global weak

modes of the posteriors µ(n) are the global weak modes of the limiting posterior µ(∞).
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Consequences for BIPs

Consider a BIP with prior µ0, potential Φ bounded below, and observed data y , each of which

may now be approximated. In addition to the assumptions of Theorem 20, assume for

simplicity that Iµ0 is lower semicontinuous, so that it equals its own Γ-limit.

If the potential Φ and prior µ0 are held constant and we examine the posterior µ(n)

associated to data y (n), then

Φ( · ; y (n)) cts−−−→
n→∞

Φ( · ; y) =⇒

{
Iµ(n)

Γ−−−→
n→∞

Iµ and

(Iµ(n))n∈N is equicoercive

=⇒ convergence of MAP estimators (up to subsequences)
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Consequences for BIPs

Consider a BIP with prior µ0, potential Φ bounded below, and observed data y , each of which

may now be approximated. In addition to the assumptions of Theorem 20, assume for

simplicity that Iµ0 is lower semicontinuous, so that it equals its own Γ-limit.

Finally, if the data and prior are held constant and we examine the posterior µ(n)

associated to the potential Φ(n), then

Φ(n)( · ; y) cts−−−→
n→∞

Φ( · ; y) =⇒

{
Iµ(n)

Γ−−−→
n→∞

Iµ and

(Iµ(n))n∈N is equicoercive

=⇒ convergence of MAP estimators (up to subsequences)

In particular, this holds when the approximate misfit/potential Φ(n) arises through

projection, e.g. Galerkin discretisation.

36/37



Closing remarks



Closing remarks

We have established a stability theory for non-parametric MAP estimators by focussing on

global weak modes, which are characterised as minimisers of extended Onsager–Machlup

functionals, and then studying the variational Γ-convergence of these functionals.

Our analysis encompasses Bayesian posteriors associated to Gaussian, Besov, and Cauchy

priors and reveals simple sufficient conditions for stability of MAP estimators (continuous

convergence of log-likelihoods, Γ-convergence and equicoercivity of prior OM functionals).

These conditions could be added to the now-standard conditions for stability of the BIP à

la Stuart (2010) to ensure stability of both the BIP and the MAP estimation problem.

(There are hypotheses that imply both BIP stability and MAP stability, but the BIP and

MAP stability assumptions are generally independent.)
Open problems / avenues for further work:

Unfortunately Γ-convergence + equicoercivity alone cannot deliver a convergence rate for the

modes!

Other classes of priors, e.g. hierarchical and deep priors, priors on non-linear spaces such as

shape spaces, etc.
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Thank You!

37/37



References 1

S. Agapiou, M. Burger, M. Dashti, and T. Helin. Sparsity-promoting and edge-preserving maximum a posteriori estimators

in non-parametric Bayesian inverse problems. Inverse Probl., 34(4):045002, 37, 2018. doi:10.1088/1361-6420/aaacac.

B. Ayanbayev, I. Klebanov, H. C. Lie, and T. J. Sullivan. Γ-convergence of Onsager–Machlup functionals: I. With

applications to maximum a posteriori estimation in Bayesian inverse problems. Inverse Probl., 38(2):025005, 32pp.,

2022a. doi:10.1088/1361-6420/ac3f81.

B. Ayanbayev, I. Klebanov, H. C. Lie, and T. J. Sullivan. Γ-convergence of Onsager–Machlup functionals: II. Infinite

product measures on Banach spaces. Inverse Probl., 38(2):025006, 35pp., 2022b. doi:10.1088/1361-6420/ac3f82.

A. Braides. A handbook of Γ-convergence. In Handbook of Differential Equations: Stationary Partial Differential

Equations, volume 3, pages 101–213. 2006. doi:10.1016/S1874-5733(06)80006-9.

J. T. Chang and D. Pollard. Conditioning as disintegration. Statist. Neerlandica, 51(3):287–317, 1997.

doi:10.1111/1467-9574.00056.

C. Clason, T. Helin, R. Kretschmann, and P. Piiroinen. Generalized modes in Bayesian inverse problems. SIAM/ASA J.

Uncertain. Quantif., 7(2):652–684, 2019. doi:10.1137/18M1191804.

M. Dashti, S. Harris, and A. Stuart. Besov priors for Bayesian inverse problems. Inverse Probl. Imaging, 6(2):183–200,

2012. doi:10.3934/ipi.2012.6.183.

M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric

inverse problems. Inverse Probl., 29(9):095017, 27, 2013. doi:10.1088/0266-5611/29/9/095017.

https://doi.org/10.1088/1361-6420/aaacac
https://doi.org/10.1088/1361-6420/ac3f81
https://doi.org/10.1088/1361-6420/ac3f82
https://doi.org/10.1016/S1874-5733(06)80006-9
https://doi.org/10.1111/1467-9574.00056
https://doi.org/10.1137/18M1191804
https://doi.org/10.3934/ipi.2012.6.183
https://doi.org/10.1088/0266-5611/29/9/095017


References 2

E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.

Nat. (8), 58(6):842–850, 1975. ISSN 0392-7881.
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