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Problem statement

Let X and Y be Bochner square-integrable random variables taking values in separable

Hilbert spaces X and Y respectively, i.e. (X ,Y ) ∈ L2(P;X × Y).

We aim to solve the following regression problem:

minimise E[∥Y − θX∥2Y ] ≡ ∥Y − θX∥2L2(P;Y) w.r.t. θ ∈ L(X ,Y), (RP)

where L(X ,Y) is the Banach space of bounded linear operators from X into Y.

In practice, we will only have data points (Xi ,Yi ), i = 1, . . . , n — so we must think about

empirical approximation and regularisation.

Moral of the talk: From a regularisation standpoint, (RP) is “just as hard” as

finite-dimensional regression in reasonable settings.
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Motivating instances of the problem

If at least one of X and Y has infinite dimension, then so too does the search space

L(X ,Y), and so (RP) is an infinite-dimensional regression problem.

We are particularly motivated by the case of infinite-dimensional Y, exemplified by
relevant applications in

functional linear regression with functional response (Ramsay and Silverman, 2005);

non-parametric regression with vector-valued kernels (Caponnetto and De Vito, 2007) (more

on this in a moment);

the conditional mean embedding (Park and Muandet, 2020; Li et al., 2022);

and inference for Hilbertian time series (Bosq, 2000).

2/21



Example: (Vector-valued) kernel regression 1

Let E be a second-countable locally compact Hausdorff space equipped with its Borel

σ-algebra BE , and let X be an RKHS of R-valued functions on E with reproducing kernel

k : E2 → R and canonical feature map φ : E → X .

Assume further that (E ,BE) is equipped with a probability measure µ, with a compact

embedding operator i : X ↪→ L2(µ) (e.g. Christmann and Steinwart, 2008, Section 4.3).

Let Y be another separable real Hilbert space. Consider G := {Aφ( · ) | A ∈ S2(X ,Y)};
this is a vv-RKHS of Y-valued functions with operator-valued reproducing kernel

K : E2 → L(Y)

(x , x ′) 7→ k(x , x ′) IdY

and we have a bounded linear embedding operator

I := i ⊗ IdY : G ∼= X ⊗ Y ↪→ L2(µ)⊗ Y ∼= L2(µ;Y).

As the embedding i : X ↪→ L2(µ) is compact, the embedding I := i ⊗ IdY is compact

⇐⇒ dimY < ∞.
3/21



Example: (Vector-valued) kernel regression 2

We now consider an E-valued random variable ξ with law L (ξ) =: µ on (E ,BE) and a Y-

valued random variable Y , both defined on a common probability space.

The nonlinear kernel regression problem

min
F∈G

E[∥Y − F (ξ)∥2Y ]

is equivalent to the (Hilbert–Schmidt) version of the linear regression problem (RP) with

X := φ(ξ):

min
θ∈S2(X ,Y)

E[∥Y − θφ(ξ)∥2Y ].
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Problem reformulation



The problem with infinite-dimensional regression

Infinite-dimensional linear regression does not necessarily admit a minimiser!

Assuming a well-specified linear model, i.e. the existence of a bounded linear operator

θ⋆ : X → Y such that

Y = θ⋆X + ε

with an exogeneous Y-valued noise variable ε satisfying E[ε|X ] = 0, (RP) is equivalent to

the operator factorisation problem

CYX = θCXX , θ ∈ L(X ,Y), (OFP)

where CYX ∈ L(X ,Y) and CXX ∈ L(X ,X ) are the covariance operators (Baker, 1973)

associated with X and Y .

Solubility of (OFP) is related to a well-known set of range inclusion and operator

majorisation conditions due to Douglas (1966) and the Moore–Penrose pseudoinverse

(Engl et al., 1996).
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Recap: Tensor products and covariance operators

For y ∈ Y and x ∈ X , y ⊗ x ∈ L(X ,Y) is the rank-one operator

X ∋ v 7→ (y ⊗ x)(v) := ⟨x , v⟩X y ∈ Y.

The Hilbert tensor product Y ⊗X is defined to be the completion of the linear span of all

such rank-one operators w.r.t. ⟨y ⊗ x , y ′ ⊗ x ′⟩Y⊗X := ⟨y , y ′⟩Y⟨x , x ′⟩X .
Note that Y ⊗X is isometric with S2(X ,Y), the space of Hilbert–Schmidt operators; and

also L2(P;X ) ∼= L2(P;R)⊗X .

The (uncentred) covariance operators (Baker, 1973) of Y with X , and of X with itself,

are given by

Cov[Y ,X ] := CYX := E[Y ⊗ X ] ∈ S1(X ,Y) = {trace-class op’s} and

Cov[X ,X ] := CXX := E[X ⊗ X ] ∈ S1(X ).

Note that C ∗
YX = CXY , and so CXX is self-adjoint.

The covariance operators are the unique operators satisfying

E[⟨y ,Y ⟩Y⟨x ,X ⟩X ] = ⟨y ,CYX x⟩Y for all x ∈ X , y ∈ Y.
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From operator factorisation to a non-compact linear inverse problem

The operator factorisation problem (OFP)

CYX = θCXX , θ ∈ L(X ,Y), (OFP)

can be reformulated in terms of a (potentially ill-posed) linear inverse problem

ACXX [θ] = CYX , θ ∈ L(X ,Y) (IP)

based on the (generally non-compact) forward operator ACXX : L(X ,Y) → L(X ,Y),

ACXX [θ] := θCXX .

We call the operator ACXX the precomposition operator associated with CXX .

Even in the misspecified case, the solution to the inverse problem (IP) still characterises

the minimiser of the linear regression problem (RP)!
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Spectral theory and regularisation



Näıve solution of the inverse problem

The standard, näıve thing to do at this point would be to solve (IP)

ACXX [θ] = CYX , θ ∈ L(X ,Y)

using the Moore–Penrose pseudoinverse of ACXX :

θ = A†
CXX

[CYX ].

The problem is that dimY = ∞ =⇒ ACXX is non-compact, in which case we have no

good off-the-shelf spectral theory for ACXX , no pseudoinverse, etc.

Fortunately, we can build a decent spectral theory for ACXX if we focus on the

Hilbert–Schmidt setting: we restrict the search to θ ∈ S2(X ,Y) and use the fact that

ACXX : S2(X ,Y) → S2(X ,Y).
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Spectral theory for precomposition operators 1

Theorem 1 (Spectral decomposition)

Let C ∈ S2(X ) be self-adjoint with spectral decomposition

C =
∑

λ∈σp(C)

λPeigλ(C) ,

where Peigλ(C) : X → X is orthogonal projection onto eigλ(C ) and the above series

expression converges in operator norm. Then the non-compact induced precomposition

operator AC on S2(X ,Y) has pure point spectrum and the spectral decomposition

AC =
∑

λ∈σp(C)

λPY⊗eigλ(C),

where PY⊗eigλ(C) : S2(X ,Y) → S2(X ,Y) is orthogonal projection onto Y ⊗ eigλ(C ) and the

above series converges in operator norm.
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Spectral theory for precomposition operators 2

Corollary 2 (Compatibility with functional calculus)

Let C =
∑

λ∈σp(C) λPeigλ(C) ∈ S2(X ) be self-adjoint. If g : R → R is extended to act on

self-adjoint Hilbert space operators with pure point spectrum in terms of their spectral

decompositions via

g(C ) :=
∑

λ∈σp(C)

g(λ)Peigλ(C),

then AC as an operator on S2(X ,Y) satisfies

Ag(C) = g(AC ) =
∑

λ∈σp(C)

g(λ)PY⊗eigλ(C),

We will use this with g = gα being some approximation — e.g. Tikhonov, spectral cutoff,

. . .— to the ‘ideal’ inverse g(λ) = λ−1, yielding a regularised population solution to (IP):

θα := gα
(
ACXX

)
[CYX ] = CYXgα(CXX ).
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Terminology for regularisation

A family of functions gα : [0,∞) → R, indexed by a regularisation parameter α > 0, is a
spectral regularisation strategy (Engl et al., 1996) if

(R1) supλ∈[0,∞)|λgα(λ)| ⩽ D for some constant D,

(R2) supλ∈[0,∞)|1− λgα(λ)| ⩽ γ0 for some constant γ0, and

(R3) supλ∈[0,∞)|gα(λ)| < Bα−1, for some constant B.

We write rα(λ) := 1− λgα(λ) for the residual associated to the regularisation scheme gα.

The qualification of gα is the maximal q such that

sup
λ∈[0,∞)

λq|rα(λ)| ≡ sup
λ∈[0,∞)

λq|1− λgα(λ)| ⩽ γqα
q

for some constant γq which does not depend on α.

Such assumptions are also common in learning theory (see e.g. Bauer et al., 2007; Gerfo

et al., 2008; Dicker et al., 2017; Blanchard and Mücke, 2018).
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Regularised empirical solutions



Empirical solutions

X and Y are in practice only accessible through sample pairs (Xi ,Yi ) ∈ X × Y for

i = 1, . . . , n.

For simplicity, we assume that these sample pairs are obtained i.i.d. from the joint law of

(X ,Y ).

We define the empirical covariance operators by

ĈXX :=
1

n

n∑
i=1

Xi ⊗ Xi and ĈYX :=
1

n

n∑
i=1

Yi ⊗ Xi .

Note that ĈXX and ĈXY are P-a.s. of rank at most n.

We now analyse the regularised empirical solution

θ̂α := gα(AĈXX
)[ĈYX ] = ĈYX gα(ĈXX ). (EMP)
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Error analysis

We can obtain rates for Hilbert–Schmidt regression based on Hölder source conditions.

We analyse the error θ⋆ − θ̂α associated with the regularised empirical solution θ̂α.

In particular, we are interested both in the Hilbert–Schmidt norm of this error and in the

mean-square prediction error

E
[∥∥(θ⋆ − θ̂α

)
X
∥∥2
Y
]
≡

∥∥(θ⋆ − θ̂α
)
C

1/2
XX

∥∥2
S2(X ,Y)

.

To treat these in a unified way we will examine∥∥(θ⋆ − θ̂α
)
C s
XX

∥∥
S2(X ,Y)

for 0 ⩽ s ⩽ 1
2 .
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Hölder source conditions

To establish quantitative convergence rates, we need a priori assumptions on the

“smoothness” of the ground truth θ⋆, a.k.a. “source conditions”:

Assumption 3

We assume that the solution satisfies the Hölder source condition θ⋆ ∈ Ω(ν,R), where

Ω(ν,R) :=
{
AνCXX [θ]

∣∣ θ ∈ S2(X ,Y), ∥θ∥S2(X ,Y) ⩽ R
}
⊆ S2(X ,Y).

Lemma 4

The source condition θ⋆ ∈ Ω(ν,R) holds if and only if the moment condition

∑
i∈I

sup
x∈X

∣∣E[⟨x ,X ⟩X ⟨ei ,Y ⟩Y ]
∣∣2

∥C ν+1
XX x∥2X

⩽ R2

hold for some (indeed, any) complete orthonormal system {ei}i∈I in Y.
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Decomposing the error 1/2

Näıve error decomposition: P⊗n-a.s. with respect to the samples (Xi ,Yi )
n
i=1,∥∥(θ⋆ − θ̂α

)
C s
XX

∥∥
S2(X ,Y)

⩽
∥∥(θ⋆ − θα)C

s
XX

∥∥
S2(X ,Y)︸ ︷︷ ︸

=approximation error

+
∥∥(θα − θ̂α

)
C s
XX

∥∥
S2(X ,Y)︸ ︷︷ ︸

=variance

. (3.1)

However, this decomposition turns out to be less than ideal and instead we use:

θ⋆ − θ̂α = θ⋆ − θ⋆ĈXXgα
(
ĈXX

)
+ θ⋆ĈXXgα

(
ĈXX

)
− θ̂α

= θ⋆rα
(
ĈXX

)
+ θ⋆ĈXXgα

(
ĈXX

)
− ĈYXgα

(
ĈXX

)
= θ⋆rα

(
ĈXX

)
+
(
θ⋆ĈXX − ĈYX

)
gα

(
ĈXX

)
.

Hence, P⊗n-a.s.,∥∥(θ⋆ − θ̂α
)
C s
XX

∥∥
S2(X ,Y)

⩽
∥∥θ⋆rα(ĈXX )C s

XX

∥∥
S2(X ,Y)

+
∥∥(θ⋆ĈXX − ĈYX

)
gα

(
ĈXX

)
C s
XX

∥∥
S2(X ,Y)

.
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Decomposing the error 2/2

Hence, P⊗n-a.s.,∥∥(θ⋆ − θ̂α
)
C s
XX

∥∥
S2(X ,Y)

⩽
∥∥θ⋆rα(ĈXX )C s

XX

∥∥
S2(X ,Y)

+
∥∥(θ⋆ĈXX − ĈYX

)
gα

(
ĈXX

)
C s
XX

∥∥
S2(X ,Y)

. (3.2)

Again, we think of the two terms on the right-hand side of (3.2) as an approximation

error and a variance term.

Crucially, though, the approximation error in the decomposition (3.2) is random — as

opposed to the deterministic approximation term in (3.1) — and both terms in (3.2) will

be amenable to analysis using concentration-of-measure techniques.
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Hilbert space concentration bounds

The key tool for us is a recent concentration inequality for Hilbert space-valued random

variables:

Theorem 5 (Maurer and Pontil, 2021, Prop. 7.11)

Let ξ, ξ1, . . . , ξn be i.i.d. random variables with joint law P⊗n taking values in a separable

Hilbert space H such that E[ξ] = 0 and the subexponential norm ∥ξ∥Lψ1 (P;H) is finite. Then,

for all δ ∈ (0, 12 ] and n ⩾ log(1/δ), with P⊗n-probability at least 1− δ,∥∥∥∥∥1n
n∑

i=1

ξi

∥∥∥∥∥
H

⩽ 8
√
2e∥ξ∥Lψ1 (P;H)

√
log(1/δ)

n
.

Despite the large number of terms that we need to bound, we carefully reduce the number of

independent appeals to Maurer and Pontil (2021) to a minimum of only two.
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Subexponential and sub-Gaussian norms

For a real-valued random variable ξ defined on (Ω,F ,P), we introduce the Banach

spaces Lψ1(Ω,F ,P;R) = Lψ1(P) and Lψ2(Ω,F ,P;R) = Lψ2(P) via the norms

subexponential: ∥ξ∥Lψ1 (P) := sup
1⩽p<∞

∥ξ∥Lp(P)
p

,

sub-Gaussian: ∥ξ∥Lψ2 (P) := sup
1⩽p<∞

∥ξ∥Lp(P)
p1/2

.

For ξ taking values in a separable Hilbert space H:

∥ξ∥Lψ1 (P;H) := ∥ ∥ξ∥H ∥Lψ1 (P) = sup
1⩽p<∞

∥ξ∥Lp(P;H)

p

and analogously for ∥ξ∥Lψ2 (P;H) := ∥∥ξ∥H∥Lψ2 (P).
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Convergence rates

Theorem 6 (Convergence rates under Hölder source conditions)

Suppose that gα has qualification q ⩾ ν + s. Suppose that Y ∈ Lψ2(P;Y), X ∈ Lψ2(P;X ),

θ⋆ ∈ Ω(ν,R), and 0 < α < 1. Let δ ∈ (0, 1e ] and s ∈ [0, 12 ]. For the regularisation schedule

αn :=

(
1√
n

) 1
ν+1

,

and for

n ⩾ n0 := max
{
∥X∥4Lψ2 (P;X ),

(
1152e2∥X∥4Lψ2 (P;X ) log(1/δ)

) 1
ν

}1+ν
,

with P⊗n-probability at least 1− 2δ,

∥∥(θ⋆ − θ̂αn

)
C s
XX

∥∥
S2(X ,Y)

⩽ 3κ̄
√
log(1/δ)

(
1√
n

) s+ν
1+ν

,

where κ̄ is an explicit constant depending only on the regularisation scheme, the source

condition, and the sub-Gaussian norms of X and Y .
19/21



Optimal rates and comparison to kernel setting

The rates in Theorem 6 match those of kernel regression with scalar and

finite-dimensional response variables under a Hölder source condition and with no

additional assumptions on the eigenvalue decay of CXX (Caponnetto and De Vito, 2007;

Blanchard and Mücke, 2018; Lin et al., 2020).

Minimax optimality of these rates is only derived by Caponnetto and De Vito (2007) and

Blanchard and Mücke (2018) under the additional assumption that the eigenvalues of CXX

decay rapidly enough, which is an implicit assumption on the marginal distribution of X .

To establish minimax optimality in our setting, we would have to repeat the standard

arguments, e.g. apply a general reduction scheme in conjunction with Fano’s method

(Tsybakov, 2009).

However, as discussed earlier, the Hilbert–Schmidt regression problem has scalar response

kernel regression and some settings of kernel regression with vector-valued response as

special cases.
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Closing remarks



Open questions

Can we obtain fast 1/n rates? This would require additional assumptions about the joint

law of (X ,Y ). So far, this is only solved for the special case of the CME (Li et al., 2022).

Solving (RP)/(IP) over the non-reflexive Banach space L(X ,Y) — a simple yet really evil

example is X = Y and θ⋆ = Id.

Learning in L(X ,Y) requires more general source conditions, since the Hölder source

condition θ⋆ = θ̃C νXX with θ̃ ∈ L(X ,Y) already implies the Hilbert–Schmidt setting

θ⋆ ∈ S2(X ,Y) for ν > 1
2 .

For Banach space X and Y, a suitable analogue of (IP) is needed. The Hilbert case uses

tr(CXX ) = E[∥X∥2X ] and derivative of squared norm.

Extension to more general non-i.i.d. sample data, e.g. autoregression for stationary time

series?
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Thank You!
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