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1 Rings

1.1 Rings

Definitions 1.1.1. Let R be a non-empty set that has two laws of compo-
sition defined on it. (We call these laws addition and multiplication and use
the familian notatation.) We say that R is a ring (with respect to the given
addition and multiplication) if the following hold:

(i) a+band ab € R for all a,b € R;
(ii) a+b=0b+a for all a,b € R;

(ili) a+ (b+c) = (a+b) +cforall a,b,c € R;

(v) given a € R there exists an element —a € R such that a + (—a) = 0;
(vi) a(bc) = (ab)c for all a, b, c € R;

)
)
)
(iv) there exists an element 0 € R such that a + 0 = a for all a € R;
)
)
(vii) (a+ b)e = ac + be for all a,b,c € R;
)

(viii) a(b+ c¢) = ab+ ac for all a,b,c € R.

Thus, a ring is an additive Abelian group on which an operation of mul-
tiplication is defined, this operation being associative and distributive (on
both sides) with respect to the addition.

R is called a commutative ring if, in addition, it satisfies ab = ba for all
a,b € R. The term non-commutative ring can be a little ambiguous. When
applied to a particular example it clearly means that the ring is not com-
mutative. However, when we discuss a class of “non-commutative rings” we
mean “not necessarily commutative rings”, and it is usually not intended to
exclude the commutative rings in that class.

If there is an element 1 € R such that la = al = a for all a € R we say
R has an identity.



1.2 Examples of Rings

Example 1.2.1. The integers 7Z, the rational numbers Q, the real numbers
R, the complex numbers C all with the usual operations.

Example 1.2.2. R|z], the polynomial ring in an indeterminate x with coef-
ficients in R, with xr = rz for all r € R.

Example 1.2.3. M, (R) := {n x n matrices over the ring R}.

Example 1.2.4. T, (R) := {n X n upper-triangular matrices over the ring
R}.

Example 1.2.5. U,(R) := {n X n strictly upper-triangular matrices over
the ring R}.

Example 1.2.6. F(xq,...,x,), the free algebra over a field F' with generators
Z1,...,%,. The generators do not commute, so x1rsx 13 # .I'%.Tgl'g.

Example 1.2.7. A,(C), the first Weyl algebra, which is the ring of poly-
nomials in x and y with coefficients in C, where x,y do not commute but
zy —yxr = 1.

Example 1.2.8. Subrings of the above, such as J := {a + ibla,b € Z}.

1.3 Properties of Addition and Multiplication
We typically write a — b for a + (—b).
Proposition 1.3.1. The following hold for any ring R:

(i) the element 0 € R is unique;

(ii) given a € R, —a is unique;

(ii)) —(—a) =a for alla € R;

() for any a,b,c € R, a+b=a+c<b=c

(v) given a,b € R, the equation x + a = b has a unique solution x = b — a;

(vi) —(a+0b) = —a—>b for all a,b € R;



(vii) —(a —b) = —a +b for all a,b € R;
(viii) a0 = 0a =0 for all a € R;
(i) a(—b) = (—a)b = —(ab) for all a,b € R;
(z) (—a)(—b) = ab for all a,b € R;
(zi) a(b—c) = ab— ac for all a,b,c € R.

1.4 Subrings and Ideals

Definition 1.4.1. A subset S of a ring R is called a subring of R if S is itself
a ring with respect to the laws of composition of R.

Proposition 1.4.2. A non-empty subset S of a ring R is a subring of R if
and only if a —b € S and ab € S whenever a,b € S.

Proof. If S is a subring then obviously the given condition is satisfied.
Conversly, suppose that the condition holds. Take any a € S: a—a =0 € S.
Foranyz € S,0—z=—-z € S. So,ifa,be S,a—(-b) =a+beS. So Sis
closed with respect to both addition and multiplication. Thus S is a subring
since all the other axioms are automatically satisfied. O

Examples 1.4.3. (i) 2Z, the subset of even integers, is a subring of Z.
(ii) Z is a subring of the polynomial ring Z[x].

Definition 1.4.4. A subset [ of a ring R is called an ideal if
(i) I is a subring of R;
(ii) foralla € I and r € R, ar € I and ra € 1.

If I is an ideal of R we denote this fact by I < R.

Examples 1.4.5. (i) Let R be a non-zero ring. Then R has at least two
ideals, namely R and {0}. We often write 0 for {0}.

(ii) 2Z is an ideal of Z.

Proposition 1.4.6. Let I be a non-empty subset of a ring R. Then I < R
if and only iof for alla, b€ I andr €e R, a—bel,arel, racl.

Proof. Exercise. ]



1.5 Cosets and Homomorphisms

Definition 1.5.1. Let I be an ideal of a ring R and x € R. Then the set of
elements z + [ := {x +i|i € I} is the coset of z in R with respect to I.

When dealing with cosets, it is important to realise that, in general, a
given coset can be represented in more than one way. The next lemma shows
for the coset representatives are related.

Lemma 1.5.2. Let R be a ring with an ideal I and x,y € R. Then x + I =
y+lsx—yel.

Proof. Exercise. ]

We denote the set of all cosets of R with respect to I by % We can give
% the structure of a ring as follows: define

(x+D)+y+1)=(x+y +1

and
(o4 Dy+1) = ay+1

for z,y € R. The key point here is that the sum and product on ? are well-
defined; that is, they are independent of the coset representatives chosen.
Check this and make sure that you understand why the fact that I is an
ideal is crucial to the proof.

Definition 1.5.3. ? is called the residue class ring (or quotient ring or factor
ring) of R with respect to I.

The zero element of? isO+I =141 forany i€ I.

If I €S C R we denote by £ the subset {s+ I|s € S} C £.
Proposition 1.5.4. Let I I R. Then

. , R «
(i) every ideal of the ring 7 18 of the form & where K < R and K 2 I.
Conversely, K I R, K O I = ? < %.

(ii) there is a one-to-one correspondence between the ideals of? and the
tdeals of R containing 1.



Proof. (i) If K* < £ then define K := {z € Rz + [ € K*}. Then
K<R K2JIand & =

(ii) The correspondence is given by K « %, where I C K < R. O

Definitions 1.5.5. A map of rings 6 : R — S is a (ring) homomorphism if
O(z +y) = 0(x) +0(y) and O(zy) = 0(x)0(y) for all z,y € R. O defined by
O(r) = 0 for all € R is a homomorphism; it is called the zero homomorphism.
¢ defined by ¢(r) — r for all r € R is also a homomorphism; it is called

the identity homomorphism. Let I < R. Then o : R — % defined by

o(r) = x + I for x € R is a homomorphism of R onto Z; it is called the

I
natural (or canonical) homomorphism (of R onto £).

Proposition 1.5.6. Let R, S be rings and 0 : R — S a homomorphism.
Then

(i) 0(0r) = Os;
(i1) O(—r) = —0(r) for allr € R;
(i17) the kernel ker 0 := {z € R|0(x) = 05} is an ideal of R;
(iv) the image O(R) := {0(r)|r € R} is a subring of S.
Proof. Exercise. O

Definitions 1.5.7. Let § : R — S be a ring homomorphism. Then € is called
an isomorphism if 0 is a bijection. We say that R and S are isomorphic rings
and denote this by R =2 S.

1.6 The Isomorphism Theorems

Theorem 1.6.1. (The First Isomorphism Theorem.) Let 6 : R — S be a
homomorphism of rings. Then

R
0(R) = 7

Proof. Let I := kerf and define o : & — 0(R) by o(z + I) := 0(z) for

x € R. The map o is well-defined since for z,y € R,
r+l=y+I=c—yecl=kerbl=0x—y) =0=0(x)=0().

o is easily seen to be the required isomorphism. O
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Theorem 1.6.2. (The Second Isomorphism Theorem.) Let I be an ideal
and L a subring of R. Then

L _L+1
LNl 1

Proof. Let o be the natural homomorphism R — % Restrict o to the

ring L. We have o(L) = £, a subring of £. The kernel of o restricted to

Lis LN I. Now apply Theorem 1.6.1. U

Theorem 1.6.3. (The Third Isomorphism Theorem.) Let I, K < R be such

that I C K. Then
R/I ~ B

K/I K

Proof. % < % and so ﬁ—% is defined. Define a map ~ : % — % by

Y(x+1):=x+ K for all z € R. The map ~ is easily seen to be well-defined
and a homomorphism onto %. Further,

Ye+Il)=Kers+ K=K
Sre K

K
<:>x—|—IETSinceKQI

Therefore, ker v = % Now apply Theorem 1.6.1. O

1.7 Direct Sums

Definitions 1.7.1. Let {I,},ca be a collection of ideals of a ring R. We
define their (internal) sum to be

Zyy:{xeR

AEA

k
x:in,xiEL\i,kEN},

i=1

the set of all finite sums of elements of the I,’s. We say that the sum of the
Iy’s is direct if each element of ), _, I, is uniquely expressible as x1 +- - -4y
with z; € I),. In this case we denote the sum as @AGA Lyorli®-- -1, if
A is finite.

Proposition 1.7.2. The sum ),y Iy is direct if and only if IO 5 p gy I =
0 for all p € A.



Proof. Exercise. ]

Definition 1.7.3. Let Ry,..., R, be rings. We define their external direct
sum S to be the set of all n-tuples {(r1,...,7,)|r; € R;}. On S we define
addition and multiplication componentwise, thus making .S into a ring. We
write S=R D --- P R,.

The set (0,...,0,R;,0,...,0) is an ideal of S. Clearly S is the inter-
nal direct sum of the ideals (0,...,0,R;,0,...,0) for j = 1,...,n. But
(0,...,0,R;,0,...,0) = R;. Because of this S can be considered as a ring in
which the R; are ideals and S is their internal direct sum. Also, in Defini-
tions 1.7.1 we can consider I; & --- @ I,, to be the external direct sum of the
rings /;. Hence, in practice, we do not need to distinguish between external
and internal direct sums.

1.8 Division Rings

Definition 1.8.1. Let R be a ring with 1. An element u € U is a unit (or an
invertible element) if there is a v € R such that uv = vu = 1. The element

v is called the inverse of u and is denoted u~".

Definitions 1.8.2. A ring D with at least two elements is called a division
ring (or a skew field) if D has an identity and every non-zero element of D has
an inverse in D. A division ring in which the multiplication is commutative

is called a field.

Example 1.8.3. (The Quaternions.) Let H be the set of all symbols ay +
a1t + asj + ask where a; € R. Two such symbols ag + a17 4+ asj + azk and
bo + b1t + baj + b3k are considered to be equal if and only if a; = b; for
i=0,1,2,3.

We make H into a ring as follows: addition is componentwise and two
elements of H are multiplied term-by-term using the relations 2 = j? =
k2 = —1,ij = —ji = k, jk = —kj = i and ki = —ik = j. Then H
is a non-commutative ring with zero 0 := 0 + 0z + 05 + 0k and identity
1:=1+0¢+ 05+ Ok.

Let ag + a1t 4+ asj + ask be a non-zero element of H, so not all the a; are
zero. We have

(ap + ari + azj + ask)(ap — ari — azj — azk) = aj + a; + a3 + a3 # 0.
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So, letting n := a2+ a? + a2 + a2, the element % — %4 — 92 _ 93 jg the inverse
) 0 1 2 3 n n n n

of ag + a1t + asj + ask.

Thus, H is a division ring. It is called the division ring of real quaternions.
Rational quaternions can be defined similarly where the coefficients are from

Q.
1.9 Matrix Rings

Definition 1.9.1. Let R be a ring with 1. Define E;; € M, (R) to be the
matrix with 1 in the (¢, j)th position and 0 elsewhere. The E;; are called
matriz units.

If (ai;) € M, (R) is arbitrary then clearly (a;;) = >0, aijEij, ai; € R,
and this expression is unique. We also have

(Ey ifj=k
EijBre = { 0 otherwise.

Theorem 1.9.2. Let R be a ring with 1. Then
(i) I 9 R = M,(I) < M,(R);
(ii) conversely, every ideal of M, (R) is of the form M,(I) for some I < R.
Proof. (i) Trivial.

(ii) Let X < M,(R). We need an I < R such that X = M, (I). Let
A= (a;) = Z” a;jE;; € X. Consider fixed o, 3, 1 < o, 3 < n. We have
E1,AEg € X since X < M, (R). So (anjE1;)Es € X. Hence

aagEn € X, (191)

that is, the matrix with a,s in the (1, 1) position and 0 elsewhere belongs to

X.

Now let I be the set of all elements of R that occur in the (1, 1) position
of some matrix in X. We show that I < R and X = M,,(I).

Let a,b € I. Then a, b occur in the (1,1) positions of matrices A, B € X.
Soa—b=(A—B);y €1 Letaecl re R Letabethe (1,1) entry of

11



A€ X. Then A = (OJZ']') = Zi,j OJZ']'EZ‘J' with aj; = a. Then EHA(TEH) e X
since X < M, (R). So ayyrEy € X, so ar € I. Similarly, ra € I. Thus
I < R.

Now let C = (¢;5) = Zi,jcijEij € X, ¢j € R By (191), ¢;; € 1.
d;; € I. By the definition of I, for each (i,j), d;;E11 € X. Therefore,
Eq(dijEn)E; € X. So dijE;j € X for each 1 < 4,j < n. Since X is an
ideal, we have D =3~ d;; Eij € X. So M,(I) C X, so M,(I) = X. O

Remark 1.9.3. The above does not hold for right ideals, e.g.

(% %) < My(Z).

Definition 1.9.4. A ring R is said to be simple if 0 and R are the only ideals
of R.

Theorem 1.9.5. Let R be a ring with 1. If R is simple then so is the ring
M,(R).

Proof. 0 and R are the only ideals of R and so M,(0) and M, (R) are
the only ideals of M, (R). So M,(R) is simple as well. O

Corollary 1.9.6. Let D be a division ring. Then the ring M, (D) is a simple
Ting.

Proof. The only ideals of D are 0 and D. U

1.10 The Field of Fractions

Definition 1.10.1. A (commutative) ring R is called an integral domain if
ab=0=a=0o0rb=0.

Example 1.10.2. Z; F[z]|, where F is a field.

Beware — non-commutative integral domains exist in advanced ring the-
ory.

Definition 1.10.3. Let R be a (commutative) integral domain that is a
subring of a field K. Then K is the field of fractions of R if every element
of K is expressible as ab™t, b# 0, a,b € R. We write K = Frac(R).

12



We now show that every commutative integral domain has a field of frac-
tions that is in some sense unique.

Example 1.10.4. Q = Frac(Z). Note that Z C R, C as well, but R,C #
Frac(Z).

Let R be a commutative integral domain, R* := R\{0}. Let S =
{(a,b)|a € R,b € R*}. Define a relation ~ on S by

(alabl) ~ (a2>b2) & arby = agb.
Lemma 1.10.5. ~ s an equivalence relation on S.
Proof. Let (a;,0;) € S,i=1,2,3.

Reflexivity: (aq,b1) ~ (a1,by) since aiby = a1b;.

Symmetry:
(ar,b1) ~ (az,b2) < arby = asb
<~ a2b1 = a162
& (ag,by) ~ (ar,by)
Transitivity:

(a1,b1) ~ (az,by) ~ (as,bs) = arby = asby, asbs = asby
= a1bybs = asb1b3
= a;1bybs = biasbsy
= (a1bg — aszby)by =0
= ai1bs = azby

since by # 0 and R is an integral domain
= (a17b1) ~ (a37b3)

O

Theorem 1.10.6. Every (commutative) integral domain with 1 has a field
of fractions.

13



Proof. Let R be an integral domain. Consider the equivalence relation
~ as above. Denote the equivalence class of (a,b) by ¢. Let K be the set of
all such equivalence classes. Define addition and multiplication in K by

a ¢ ad+be
T a T T
and ac _ac
bd b

for ¢, 5 € K. We first make sure that these definitions are well-defined. Let
s = g—:, ¢ — ¢ Then (a,b) ~ (a/,V) and (¢,d) ~ (¢,d), so abl = bd,

d d
cd’ = dc’. Hence

(ad + be)b'd = adbd’ + beb' d’
= a'bdd' + bb'c'd
= (a'd +V)bd

So (ad + be,bd) ~ (a'd" +b'd,b'd"). So + is well-defined. Similarly for multi-
plication.

Note that § = & for any b,d € R*, since 0d = b0 = 0.

It can be checked that K is a commutative ring under these operations.

—Z

%, for any b € R*, is the zero element of K; == is the additive inverse of %;
the commutative, associative and distributive laws can be easily verified.

% = l—l; for any b € R* is clearly the multiplicative identity in K. The
multiplication is clearly commutative. Let § € K*, sox #0,s0 zy #0. So
¥ exists and

zy xy 1
——:—:—:1K
yr xy 1

Thus every non-zero element of K has an inverse in K, so K is a field.

There is also a clear injective homomorphic embedding of R in K by
¢ :r — {forr € R. Now we truly have K as a field of fractions for
O(R) C K, and R = 6(R). O

Remark 1.10.7. There is no fundamental problem if R is without 1, since
rb

we can still have 15 = l—g for any b € R*. Now embed R — K by r — 2.

14



Lemma 1.10.8. Let R, R be commutative integral domains with fields of
fractions K, K respectively. Then R R= K = K.

Proof. Let 6 : R — R be an isomorphism. We have K = {ab™"|(a,b) €
R x R*}. Define a map © : K — K by O(ab™!) := 6(a)f(b)~".

© is well-defined: suppose that ab™! = cd™!, (a,b), (¢,d) € R x R*. Then
ad = be, so O(ad) = 0(bc), so 0(a)f(d) = 0(b)6(c), so 6(a)d(b)~1 = 0(c)0(d) 71,
so O(ab™) = O(cd™).

© is a homomorphism: let ab~!,cd~! € K. Then
O(ab™' + cd™') = O((ad + be)b~"d )
= 0(ad + bc)O(bd)~*
= (0(a)0(d) +9( )0(c)0(b)~10(d) ™"

= 0(a)0(b) " +0(c)0(d)
=0(ab™") +O(cd™).

Similarly, ©((ab~')(cd™')) = ©(ab™")O(cd™1).

© is surjective: every element of K is expressible as ab~* ( ,b) € Rx R*.
But 6 is an isomorphism, so @ = 6(a) for some a € R, and b = 6(b) for some

be R*. Soab! =0(a)f(b)"! = O(ab~l).

It is easy to check that © is injective. O

Corollary 1.10.9. Let R be a commutative integral domain. Then its field
of fractions is essentially unique, in that any two such fields of fractions are
1somorphic.

Proof. Take R = R, 6 = idp in the above. O
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2 Modules

2.1 Modules
Definitions 2.1.1. Let R be a ring. A set M is called a right R-module if

(i) M is an Abelian additive group;

(ii) a law of composition M x R — M : (m,r) — mr is defined that
satisfies, for all x,y € M and r,s € R,

(x +y)r =ar +yr,
x(r+s) =ar + xs,

x(rs) = (zr)s.

A left R-module is defined analagously. Here the composition law goes R X
M — M and is denoted rm.

Examples 2.1.2. (i) R and {0} are both left and right R-modules.

(ii) Let V' be a vector space over a field F.. Then V is left (alternatively,
a right) F-module. The module axioms are part of the vector space
axioms.

(iii) Any Abelian group A can be considered as a left Z-module: for g € A,
k € Z, define

g+---+g k times k>0
kg:=<¢(—g)+---+(—g) ktimes k<0
04 k=0

(iv) Let R be aring. Then M, (R) becomes a left R-module under the action
r(z;;) == (rz;;). Clearly, we can also make a similar right R-module
action.

For technical reasons, it is easier to work with right modules in the theory
of semi-simple Artinian rings.

Let R be a ring. The symbol Mp will denote M, a right R-module;
similarly, gpM will denote M, a left R-module.

16



Proposition 2.1.3. Let M be a right R-module. Then
(i) Opr = 0y for all v € R;
(i) mOg = 0y for allm € M;
(i1i) (—m)r =m(—r) = —(mr) for allm € M, r € R.
Proof. (i), (ii). Exercises.
(i) By (i),
mr +m(—r) =m(r + (—r)) =m0z = Oy

So m(—r) = —(mr) by the uniqueness of —(mr) in the Abelian group M.
Similarly (—m)r = —(mr). O

Definition 2.1.4. Let K C Mpg. Then K is a right R-submodule (or just
submodule) if K is also a right R-module under the law of composition for

M.

Proposition 2.1.5. Let & # K C Mg. Then K is a submodule of M if and
only if forallz,ye K, re R, x —y € K and zr € K.

Proof. Exercise. O

Definitions 2.1.6. Submodules of the module Rg are called right ideals.
Submodules of g R are called left ideals.

2.2 Factor Modules and Homomorphisms

Let K be a submodule of Mpg. Consider the factor group % Elements of

% are cosets of the form m + K for m € M. We can make % into a right

R-module by defining, for m € M, r € R,
[m + Klr := [mr + K].

Check that this action is well-defined and that the module axioms are satis-
fied.

Definition 2.2.1. 2% with this action is called the factor (or quotient) module
of M by K.

17



Example 2.2.2. Let n € Z, n > 2. Then %Z is a natural Z-module.

Definitions 2.2.3. Let M, M’ be right R-modules. A map 6 : M — M’ is
an R-homomorphism if

(i) O(x+y) =6(x)+0(y) for all z,y € M;
(ii) O(zr) = 6(z)r for all z € M, r € R.

(Similarly for left R-modules.) If K is a submodule of Mg then the map
o : M — % defined by o(m) = [m + K] is an R-homomorphism of M onto
%. It is called the canonical (or natural) R-homomorphism.

Proposition 2.2.4. Let 0 : Mr — My, be an R-homomorphism. Then
(1) 0(0nr) = Onrr;
(i1) the kernel ker 6 := {z € M|0(x) = 0pp} is a submodule of M ;
(i17) the image O(M) := {6(m)|m € M} is a submodule of M';
(v) 0 is injective if and only if ker @ = {0p/}.

Definition 2.2.5. Let § : Mr — M} be an R-homomorphism. If 6 is
bijective then it is an R-isomorphism and we write M = M’.

2.3 The Isomorphism Theorems
These are similar to those for rings and have similar proofs.
Theorem 2.3.1. Let § : Mg — M}, be an R-homomorphism. Then

ye
~ kerf’
Theorem 2.3.2. If K, L are submodules of Mg then
L+K , L
K — LNnK’
Theorem 2.3.3. If K, L are submodules of Mr and K C L then % s a
submodule of % and

o(M

M/K M
L/K ~ L
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When K is a submodule of Mz and L O K a submodule of M, then
% is a submodule of % Conversely, every submodule of % is % for L a
submodule of M containing K. Thus

M
{submodules of ?} > {submodules of M containing K} .

2.4 Direct Sums of Modules

Definition 2.4.1. Let My,..., M, be right R-modules. The set of all n-
tuples {(my,...,m,)|m; € M;} becomes a right R-module if we define

(may...,my) + (my,...,m) = (mqy+mi,....m, +m)),

!/
n
(my,...,mp)r = (myr, ... ,m,r),

for m;, m, € M;, r € R. This is the external direct sum of the M;, which we
denote @, M; or My & --- & M,,.

Definition 2.4.2. Let { M)} ca be a collection of subsets of Mg. We define
their (internal) sum by

ZM,\ = {my, + - +my|my € M), for finite subsets {A1,...,\e} C A}.
AEA

Thus ), 4 M, is the set of all finite sums of elements from the M. It is
casy to see that ), , M) is a submodule of M.

Definition 2.4.3. ), _, M, is direct if each m € ), ., M, has a unique
representation as m = my, + --- 4+ m,, for some my, € M,,.

We can show that ), _, M, is direct if and only if

MY My | =0}

AEA\{p}

for all ;€ A. If the sum is direct we use the same @ notation as above.

As before with rings, there really is no difference between (finite) internal
and external direct sums of modules.
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Definition 2.4.4. Let R be a ring with 1. Mg is unital if m1 = m for all
m € M. Similarly for g M.

Exercise 2.4.5. Let R be a ring with 1, M a right R-module. Show that
M has submodules M; and M, such that M = M; & M, with M; unital and
mor = 0 for all my € My, r € R.

Since modules like M, give us no information about R, whenever R has
1 we assume that all R-modules are unital.

2.5 Products of Subsets

Let K, S be non-empty subsets of Mg and R respectively. Define their prod-
uct KS to be

kiGK,SiGS,TLGN}.

KS = { i k’z‘SZ‘
i=1

Le., KS consists of all finite sums of elements of type ks for k € K, s € S.
If o+ KCM,S <, R, then KS is a submodule of M — we need finiteness
to make this work.

This definition applies, in particular, with M = R. Thus, if @ # S C R,

SZ = { i Siti

i=1

Siy bs ES,HEN}.

Extending this inductively, S™ consists of all finite sums of elements of type
$189...8,, S; € S. Note that S 4, R = S™ 4, R.
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3 Zorn’s Lemma

3.1 Definitions and Zorn’s Lemma

Definition 3.1.1. A non-empty set S is said to be partially ordered if there
is a binary relation < on §, defined for certain pairs of elements, such that
for all a,b,c € S,

(i) a < a;
(i) a<bandb<c=a<c
(iii) a<band a < b= a=0.

Definition 3.1.2. Let S be a partially ordered set, a non-empty subset 7°
is said to be totally ordered if for all a,b € ¢T', a < bor b < a.

Definitions 3.1.3. Let S be a partially ordered set. An element x € S is
called maximal if x <y and y € S = x = y. Similarly for minimal.

Definition 3.1.4. Let 7 be a totally ordered subset of a partially ordered
set S. We say 7 has an upper bound (in S) if 3¢ € S such that = < ¢ for all
xeT.

Axiom 3.1.5. (Zorn’s Lemma.) If a partially ordered set S has the property
that every totally ordered subset of § has an upper bound then & contains
a maximal element.

Remark 3.1.6. There may in fact be several maximal elements. Zorn’s
Lemma guarantees the existence of at least one such element.

3.2 The Well-Ordering Principle

Definition 3.2.1. A non-empty set S is said to be well-ordered if it is totally
ordered and every non-empty subset of S has a minimal element.

Axiom 3.2.2. (The Well-Ordering Principle.) Any non-empty set can be
well-ordered.
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3.3 The Axiom of Choice

Axiom 3.3.1. (The Axiom of Choice.) Given a class of non-empty sets there
exists a “choice function”, i.e. a function that assigns to each of the sets one
of its elements.

It can shown that

Axiom of Choice < Zorn’s Lemma < Well-Ordering Principle.

3.4 Applications

Definitions 3.4.1. let M be a right ideal of a ring R. M is said to be a
mazimal right ideal if M # R and M C M’ 4, R = M’ = R, Similarly for
mazimal left ideal and maximal two-sided ideal.

Theorem 3.4.2. Let R be a ring with 1. Let I # R be a (right) ideal of R.
Then R contains a maximal (right) ideal M such that I C M.

Proof. We prove this for I <, R. Consider § :={X <, R|X 2 I, X #
R}. § # @ since I € S. Partially order S by inclusion. Let 7 := {X, }aea
be a totally ordered subset of S.

Consider X :=J,cp Xo. If 21,22 € X then 21 € X,,, 22 € X,, for some
a1, € A. Since 7 is totally ordered, we can assume that X,, C X,,. So
21,29 € Xay, SO0 1 — 22 € X, C X. Clearly, alsoz € X, andr € R = ar €
X. Thus X <, R. Also X # R since

X=R=1cX
= 1 € X, for some «
= X0 =R,

which is a contradiction. Trivially, X D I so X € S. Also clearly, X, C X
for all a € A.

Thus, X is an upper bound in S for 7. So Zorn’s Lemma applies and
hence § contains a maximal element M. Clearly M is a maximal right ideal
of R and contains /.

The proof is similar for left ideals and two-sided ideals. O
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Remark 3.4.3. This result is false if R is without 1.
Corollary 3.4.4. A ring with 1 contains a mazimal (Tight) ideal.

Proof. Take I = {0} in the above. O

Note that pZ is a maximal ideal of Z for each prime p.
Theorem 3.4.5. Every vector space has a basis.

Proof. Exercise. Hint: Apply Zorn’s Lemma to obtain a maximal set
of linearly independent vectors. Note that a set of vectors is defined to be
linearly independent if every finite subset is linearly independent. O

Exercises 3.4.6. Let R be a commutative ring with 1. Show that
(i) if R is a finite integral domain then R is a field;

(ii) if M < R and M # R then M is maximal if and only if 1 is a field.
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4 Completely Reducible Modules

4.1 Irreducible Modules
Definition 4.1.1. A right R-module M is irreducible if

() MR £0
(ii) M has no submodules other than 0 and M.
If R has 1 and M is unital then (i) can be replaced by M # 0.

. . . Z . . .
Examples 4.1.2. (i) Let p be a prime; then -7 1s an irreducible Z-module.

(ii) Every ring R with 1 has an irreducible right R-module. By Theorem
3.4.2, R has a maximal right ideal M; £ is an irreducible right R-

M
module.

(iii) Let V' be a vector space over a field F. Then any 1-dimensional sub-
space of V' is an irreducible F-module.

The vector space V has the following interesting property: V is a sum of
1-dimensional irreducible submodules/subspaces, i.e. has a basis; this sum
is direct. Not all modules over arbitrary rings have this property. Consider
z

17 as a Z-module. % is the only (irreducible) submodule of %. S0 % is not

expressed as a sum of irreducible submodules.

4.2 Completely Reducible Modules

Definition 4.2.1. My is said to be completely reducible if M is expressible
as a sum of irreducible submodules.

Examples 4.2.2. (i) Let F' beafield. Then every F-module is completely
reducible, i.e. every vector space has a basis.

(i) Z is completely reducible as a Z-module: 2 = 22 + 22

Definition 4.2.3. Let {M,} ca be a family of submodules of Mg. The
family is independent if the sum ), _, M, is direct. Thus {My}sen is inde-

pendent if and only if M, N <ZA€A\{H} ]\/[)\> =0 for all u € A.
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Lemma 4.2.4. Suppose {My}rea is a family of irreducible submodules of
Mp and let M := )", .\ My. Let K be a submodule of M. Then there is an

independent subfamily { My} ear such that M = K @ <@u6/\’ Mu)-

Proof. We apply Zorn’s Lemma to the independent families of the form
{K}U{M,}ex, X CA.

Partially order the set S of all such families by inclusion. Let 7 be a to-
tally ordered subset of S, C' the union of all the families in 7. Each member
of 7 has the form {K} U{M,},cxca, so we have the same form for C.

We need to show that C' € §, i.e. C'is an independent family. Let I be
any submodule in C' and suppose Y is the sum of all other submodules in C'.
Let z € INX. Then x =2y + -+ +x,, x; € I; # I, I; a submodule in C for
7=1,...,n.

Now I,1,...,1I, are all in C' so each comes from some family in 7. But
T is totally ordered, so I, 1I4,..., I, lie in some one family in 7. But this
family is independent, so x =2y =--- =2, =0. So INX =0.

So C'is independent. Also C' has the form {K} U{M,},exca, so C € S.
Clearly C'is an upper bound for 7. So, by Zorn’s Lemma, S contains a
maximal element, say {K} U {M,},carca. (¥).

We claim M = K & <@ueA’ Mu)- Suppose Ja € A such that M, N
<K ® <@ueA’ Mu)) =0. Then {K} U{M,}U{M,},er would be an inde-
pendent family, contradicting (*). Thus M, N <K @ <@ue K Mu)) = M, for
all « € A, since M, is irreducible and M, N <K &) <@M€A/ Mu)) is a submod-
ule of M,. So M, C K @ <@u€A’ MM> for each o € A. As M =3, M,

M=K®o (@MM)

nen’
U

Lemma 4.2.5. (Dedekind Modular Law.) Let A, B, C' be submodules of Mg
such that BC A. Then AN(B+C)=B+AnNC.
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Proof. Elementary. O

Theorem 4.2.6. Let M be a non-zero right R-module. The following are
equivalent:

(i) M is completely reducible;
(i) M is a direct sum of irreducible submodules;

(iti)) mR = 0, m € M = m = 0 and every submodule of M is a direct
summand of M.

Proof. (i)=-(ii). Take K =0 in Lemma 4.2.4 above.

(ii)=>(iii). Suppose that mR = 0 for some m € M. Let M = @, M,
M, irreducible. Then m = my + - - - + my, for some m; € M,,.

mr=0reR=mr+- ---+mr=>0

= m,r = 0 for all 7,

since the sum of the M), is direct.

Define K := {x € My,[xR = 0} for j = 1,..., k. Then Kj is a submod-
ule of M),. So K; =0 or M »; since M)y, is irreducible. But K; # M), since
My, R # 0 by definition of irreducible submodule. So K; =0 for j =1,... k.
Thus m; = 0forj =1,...,k,som = 0. The second part follows from Lemma
4.2.4.

(iii)=(i). Our first aim is to show that M has an irreducible submodule.

Note that by the Dedekind Modular Law the hypothesis on M is inher-
ited by every submodule of M.

Let 0 # y € M. Let S be the set of all submodules K of M such that
y & K. § # @ since {0} € S. Partially order S by inclusion; let 7 be a
totally ordered subset of S. Let C' be the union of all the submodules in 7.
Then y ¢ C and C'is a submodule of M. So C' € § and C' is an upper bound
for 7. By Zorn’s Lemma, S has a maximal element B. y € B so B # M.
Hence, by hypothesis, there is a B’ # 0 such that B @ B’ = M. We claim
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that B’ is irreducible.

B'R # 0 by hypothesis. Suppose B’ contains a proper submodule B; # 0.
Then there is a submodule By # 0 such that B’ = B1 @ By. Now y € B1 @ Bo
by the maximality of B € S. Soy € (B @& By) N (B & B,) = B, a contradic-
tion. So B’ is irreducible, and thus M has an irreducible. Let K be the sum
of all these.

If K # M there is a non-zero submodule L of M such that M = K & L.
But the above applied to L gives an irreducible in L, a contradiction since K
contains all the irreducible submodules of M and K N L = 0. Thus K = M
and M is completely reducible. O

Remark 4.2.7. The first part of condition (iii) holds automatically when R
has 1 and M is unital.

4.3 Examples of Completely Reducible Modules

Example 4.3.1. Let D be a division ring and R := M,,(D). Then both gR
and Rg are completely reducible.

Proof. Let
0O ... 0
Ij:=|D ... D| <+ jthrow
0 0
(/0 ... 0 )
= a1 ... G ajr € D
(L \O0 ... 0 )

I; is the set of all matrices in M,,(D) where all rows except the jth are zero.
Then I; <, R and I; = E;; R, where Ej; is the (j, ) matrix unit.
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We claim that each I; is an irreducible R-module.

Suppose that 0 C X C I;, X <, R. Then X contains a non-zero matrix
A = (an3). A must have a non-zero entry, and since A € I;, a;, # 0 for
some k. Let B be he matrix with aj_kl in the (k, j)th place and 0 elsewhere.
Then AB = Ej;. So E;; € X, since A € X 4, R. So Ej;R C X since
X <, R. Thus I; = X. Since R has 1, I;R # 0, each I; is an irreducible
right R-module.

It is clear that R= 11 ®---&1,, so Ry is completely reducible. Similarly
for rR. O

Example 4.3.2. Let R := Ry & --- ® R,, be a direct sum of rings, where
R; := M, (D;), D; division rings, n; € N. Again rR and Rg are completely
reducible.

Proof. Since each R; < R, each R; can be viewed as an R;-module or an
R-module. Further, the R;-submodules and R-submodules coincide. Note
that R;R; = 0 for 7 # j.

By the previous example, each R; is a sum of irreducible R;-submodules.
So each R; is a sum of irreducible R-submodules. So R is a sum of irreducible
R-submodules. Hence gkR and Rg are completely reducible. ]

The significance of this example is that we now aim to show that if R is
a ring with 1 and Rpg is completely reducible then it is necessarily a ring of
the type given in the second example above. As a consequence we shall have
Rp completely reducible & rR completely reducible.
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5 Chain Conditions

5.1 Cyclic and Finitely Generated Modules

Definitions 5.1.1. Let @ # T C Mpg. By the submodule of M generated by
T we mean the intersection of all submodules of M that contain 7. We de-
note this by (7"). Thus (7') is the “smallest” submodule of M that contains 7.

When T consists of a single element a € M we have
(a) ={ar+ Xa|r € R,\ € Z}
since the RHS
(i) is a submodule of M;
(ii) contains a;
(iii) lies inside any submodule of M containing a.

If R has 1 and M is unital then (a) = aR.

If M = (a) for some a € M then M is said to be a cyclic module generated
by a. A module M is said to be finitely generated if M = (ay) + - -+ + (ax)
for some finite collection {a,...,ar} € M. The a; are generators of M

If R has 1 and Mg is unital then Mg finitely generated = M = a1 R +
-+ a,R for some a; € M.

A cyclic submodule of Rg (respectively gR) is called a principal right
(respectively left) ideal of R. Thus aZ < Z is principal.

5.2 Chain Conditions
Definition 5.2.1. A set A is called an algebra over a field F if

(i) A is a vector space over F;

(ii) A is a ring with the same addition as in (i);
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(ili) the ring and vector space products satisfy
A(ab) = A(ab) = a(Ab)
forall a,b € Aand )\ € F.
Example 5.2.2. M, (F) is an n*>-dimensional algebra over the field F.

Substructures, homomorphisms etc. for algebras can be defined in the
usual ways. Thus

Definition 5.2.3. I C A is an (algebra) right ideal if
(i) I <, A as rings;
(ii) I is a subspace of the vector space A.

If A has identity 1 then the vector space structure is automatically preserved.

Example 5.2.4. Let [ <, A, K <y A. Thenfor A\ € F,x € I, A\x = \(x1) =
x(Al) € I, since [ is a right ideal of the ring A and A1 € A. Similarly, for
ANeF ye K, \y=XA1ly) = (AM)y € K. In general, if A is an algebra over
a field F and A € F' we cannot immediately say that A € A.

However, if A has 1 we can overcome this problem: define
F:={\|\e F}.

Clearly F is a subalgebra of A and a field isomorphic to F. If we identify
F — F we can assume F' — A.

Example 5.2.5. For M, (F),
Foale|: .. | eF.
0 ... A

Now let A be an n-dimensional algebra with 1. Let Iy C I C ... be an
ascending chain of right ideals in A. Since each I; is a subspace of A we have
dlij = diij+1 <~ Ij = Ij+1.

Hence, the chain can have at most n + 1 terms. Similarly for descending
chains. Many properties of algebras can be deduced from these facts alone.
Moreover, there are rings (for example, Z) that are not algebras but that still
satisfy something like the above property.
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Definitions 5.2.6. (i) A module Mg has the ascending chain condition
on submodules if every ascending chain of submodules M; C M, C
... has equal terms after a finite number of steps. Similarly for the
descending chain condition.

(ii) Mg has the mazimum condition if every non-empty set S of submodules
of M contains a maximal element with respect to inclusion. Similarly
for the minimum condition.

Remark 5.2.7. The ascending chain condition or descending chain condi-
tion alone does not imply that all chains stop after a fixed n terms. For
example, Z has the ascending chain condition (it’s a principal ideal domain)
but ascending chains of arbitrary length can be constructed:

k7, coklg ... Cc2Z C Z.

However, if we have both the ascending chain condition and descending chain
condition then such a “global” n does exist. This follows from the theory of
composition series.

Theorem 5.2.8. Let My be a right R-module. The following are equivalent
(i) M has the mazimum condition on submodules;
(ii) M has the ascending chain condition on submodules;

(1ii) every submodule of M is finitely generated.

Proof. (i)=-(iii). Suppose that K is a submodule of M that is not finitely
generated. Choose z; € K and let K := (x1). Then K # K;. So Jz5 € K
with zy & K;. Let Ky := (x1) + (z2). Then Ky # K. So Jzz € K such
that o3 € K. K3 := (x1) + (z2) + (z3). Define K; inductively like this for
positive integers i. Let & := {K;|i € N}; S has no maximal element. So,
by the contrapositive, if M has the maximum condition on submodules then
every submodule is finitely generated.

(iii)=(ii). Let K; C K5 C ... be an ascending chain of submodules of M.
Let K :=|J;2; K;; then K is a submodule of M and K is finitely generated,
generated by x1,...,x, € K, say. Then 3t € N such that z,...,x, € K;.
So K = (x1)+ -+ (z,) C K;. Hence K; = Ky for all j > 0.
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(ii)=-(i). Let S be a non-empty collection of submodules of M, Choose
K, € §. If K is not maximal in §, K5 € S such that K; C Ky. If Ky is
not maximal 3K3 € S such that Ky C K3. So, by the Axiom of Choice, we
obtain an ascending chain K; C Ky C K3 C ... of submodules of M. O

Theorem 5.2.9. Let My be a right R-module. The following are equivalent
(i) M has the minimum condition on submodules;
(i) M has the descending chain condition on submodules;
Proof. Similar to the above. O

Examples 5.2.10. (i) A finite ring has both the ascending chain condi-
tion and descending chain condition on right and left ideals.

(ii) A finite-dimensional algebra with 1 has both the ascending chain con-
dition and descending chain condition on right and left ideals.

(iii) A commutative principal ideal domain has the ascending chain condi-
tion on ideals. Z, F[z] and J are commutative principal ideal domains.
So, in particular, these have the ascending chain condition on ideals;
they do not have the descending chain condition on ideals.

Theorem 5.2.11. Let K be a submodule of a module M. Then M has the
ascending chain condition (respectively the descending chain condition) on
submodules if and only if % has the ascending chain condition (respectively
the descending chain condition) on submodules.

Proof. (=). Easy.

(«<). Let M; C My C ... be an ascending chain of submodules of M.
Consider the chains

MinKCMNKC...,
Mi+KCM+KC....

The first chain consists of submodules of K, so 35 € N such that M; N K =
M ;N K for all ¢ > 0. The second chain consists of submodules of M
containing K. These are in one-to-one correspondence with submodules of
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%. So 3k € N such that M+ K = M ;+K for alli > 0. Let n = max{j, k}.
Now
My = Mypi O (Myyy; N K)
= Mpy; N (Mn + K)
= M, + (M,; N K) by the Dedekind Modular Law
=M, + (M, N K)
=M,

So M has the ascending chain condition on submodules. Similarly for the
descending chain condition. O

Corollary 5.2.12. Let My, ..., M, be submodules of Mg. If each M; has
the ascending chain condition (respectively, the descending chain condition)
on submodules then so does K == My +---+ M,,.

Proof. Let K := M; + Ms. Then by the Second Isomorphism Theorem,
Ky M+ M, M,

M, M,  MnMy

Mo
MiNMs

factor of Ms. So % has the ascending chain condition on submodules. Thus

Now has the ascending chain condition on submodules, since it is a

M, and % have the ascending chain condition on submodules. So, by The-
orem 5.2.11, K; has the ascending chain condition on submodules. Extend
to K by induction.

Analagously for the descending chain condition. O

Corollary 5.2.13. Let R have 1 and the ascending chain condition (respec-
tively, the descending chain condition) on ideals. Let Mg be a (unital) finitely
generated R-module. Then M has the ascending chain condition (respectively,
the descending chain condition) on submodules.

Proof. Since My is unital and finitely generated, there exist mq, ..., my €
M such that M = m1R + - -- + myR. By Corollary 5.2.12, it is enough to
show that each m;R has the ascending chain condition on submodules. Let
0; : Rg — m;R : v — m;r. Then 6; is an R-homomorphism onto m;R. So
each m;R is a factor module of Rg. Since Rg has the ascending chain con-
dition on submodules it follows that m;R has the ascending chain condition
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on submodules.

Similarly for the descending chain condition. O

Remark 5.2.14. For the ascending chain condition the above result is still
true even if R does not have 1; for the descending chain condition the result
is false.

Corollary 5.2.15. If R has the ascending chain condition (respectively, the
descending chain condition) on right ideals then so does the ring M, (R).

Proof. Consider M,(R) as a right R-module in the natural way. Let
Tij = {(rre) € Mp(R)|rke # 0 = k = i, = j}. Then each T}; is an
R-submodule of M, (R) that is isomorphic to Rg. So each Tj; has the as-
cending chain condition on R-submodules. But M, (R) = @ijl T;;. So by
Corollary 5.2.12, M, (R) has the ascending chain condition on R-submodules.
Clearly, however, a right ideal of M, (R) is also an R-submodule of M, (R).
So M, (R) has the ascending chain condition on right ideals.

Similarly for the descending chain condition. O

Example 5.2.16. Let D be a division ring. Then M, (D) has both the
ascending chain condition and descending chain condition on right ideals,
since 0 and D are the only (right) ideals of D.

Exercise 5.2.17. Let S be a subring of M, (Z) such that S contains the
identity of M, (Z). Show that S is a ring with the ascending chain condition
on right ideals.

Definitions 5.2.18. A module with the ascending chain condition on sub-
modules is called a Noetherian' module. A module with the descending chain
condition on submodules is called an Artinian® module. A ring with the as-
cending chain condition on right ideals is called a right Noetherian ring. A
ring with the descending chain condition on right ideals is called a right
Artinian ring. Similarly for left Noetherian ring and left Artinian ring.

Theorem 5.2.19. (The Hilbert Basis Theorem.) If R is a right Noetherian
ring then so is the polynomial ring R|x].

! Amalie (Emmy) Noether (1883-1935)
2Emil Artin (1898-1962)
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6 Semi-Simple Artinian Rings

6.1 Nil and Nilpotent Subsets
Definitions 6.1.1. Let R be a ring.
(i) = € R is nilpotent if 2™ = 0 for some n > 1.

(ii) A subset S C R is a nil subset if every element of S is nilpotent. Thus
S nil, z € S = In(r) € N such that 2@ = 0.

(iii) S is a nilpotent subset if S™ = 0 for some n > 1. Recall that
S" = {23152...sn S; ES}.

finite
) 0 1Y). .
Examples 6.1.2. (i) In My(Z), (O 0> is a nilpotent element.

(ii) In Z, 22 is a nilpotent ideal.

Lemma 6.1.3. (i) If I, K are nilpotent right ideals than so are [ + K and
RI.

(i1) Every nilpotent right ideal is contained in a nilpotent ideal.

Proof. (i) There are positive integers r, s such that I” = K* = 0. Con-
sider (I + K)* ' =T+ K)(I+K)...(I+ K). This, when expanded, has
2"ts=1 terms, each of which has the form T = A} A, ... A, 1, where each
A; =1 or K. So in a typical term either I occurs > r times or K occurs > s
times.

Suppose I occurs > r times. Then T" C KI* where i > 0, k > r, with
the convention K7 = I. We have used the fact that /K C I. So T = 0. So
every term in the expansion of (I + K)"*~! vanishes. So I + K is nilpotent.

(RI)"=(RI)(RI)...(RI)=R(IR)...(IR)I C RI" =0.

(ii) Let I Q. R. If I is nilpotent then so is I + RI by (i). Clearly
I+RI<Rand I CI+ RI. O
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Definition 6.1.4. The sum of all nilpotent ideals of R is calles the nilpotent
radical of R, usually denoted N(R).

It follows from Lemma 6.1.3 that
N(R) = Z nilpotent right ideals = Z nilpotent left ideals.

Clearly N (R) is a nil ideal. It is not, in general, nilpotent.

Exercise 6.1.5. Let R be a commutative ring. Show that N (R) = the set
of all nilpotent elements of R. (Hint: use the Binomial Theorem.) Give an
example to show that this is false in general for non-commutative rings.

Example 6.1.6. (A Zassenhaus Algebra.) Let F' be a field, I the interval
(0,1), R the vector space over F with basis {x;|i € I'}. Define multiplication
on R by extending the following product on basis elements:

m]"{ 0 ifi+j>1.

Thus every element of R can be written uniquely in the form ). ; a;2;,
a; € F, with a; = 0 for all but a finite number of indices 7. Check that R is
nil but not nilpotent and that A'(R) = R.

6.2 Idempotent Elements

Definition 6.2.1. An element e € R is idempotent if e = 2.

Examples 6.2.2. (i) In any ring, 0 is an idempotent element. If 1 exists,
it is idempotent.

(i) In My (Z), ((1) 8> and (8 (1]> are idempotents.

Lemma 6.2.3. Let e be an idempotent in a ring R. Then R = eR & K,
where K = {x — ex|r € R} <, R.

Proof. Clearly K 4, R. Nowx € R=>x =ex+ (v —ex) € eR+ K. If
z € eRNK then z = ea = eb — b for some a,b € R. Then

ta=e*b—eb=cb—eb=0

and
e‘a=-ea =0.

Soz=0.SoR=eRDo K O
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Corollary 6.2.4. (Peirce Decomposition.) Let R be a ring with 1 and e € R
an idempotent. Then R =eR® (1 —¢e)R

Proof. K = (1 —e)R in the above if R has 1. O
Remark 6.2.5. e is idempotent < 1 — e is idempotent.

Exercise 6.2.6. Take an idempotent in M(Z) and write down a Peirce
decomposition.

Proposition 6.2.7. Let R be a ring with 1. Suppose R = @?:1 I;, a direct
sum of right ideals. Then we can write 1 = ey + - - - + e, with e; € I; having
the following properties:

(1) each e; is an idempotent;
(it) e;e; =0 for all i # j;
(1)) I; = e;R for j=1,...,n;
(iv) R= Rey @ ---® Re,, a direct sum of left ideals.
Proof. (i) and (ii). For each j we have
e;j=1lej =eej+---+ej_1e; + e? +ejpie; + -+ eqe.
So

€j—€§:€1€j+"'—|—€j,1€j—|—€j+1€j+"'—|—€n€jE[ij[sIO
s#J

by directness. So e; = e? and 257&]‘ ese; = 0. Since the sum of the [; is
direct, we have e;e; = 0 for all 7 # j.

(iii), (iv). Exercises. O

Example 6.2.8. Take R = M, (Z), e; = Ej; matrix unit. Then 1 = e; +
it e,and R=etR®---®e,R=Re; D - D Re,.

Definition 6.2.9. Let R be a ring. The centre of R is
C(R) :={x € R|Vr € R,xr = ra}.

C(R) is a subring of R but not, in general, an ideal.
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Exercise 6.2.10. Let F' be a field. Find C(M,,(F')). Show that C'(M,(F)) =
F' as rings.

Proposition 6.2.11. Let R be a ring with 1, with R = A1 & --® A a direct
sum of ideals. Let 1 =ey +---+ e, e;j € Aj. Then

(i) e; € C(R) forj=1,... k;

(ii) e? =e¢; forall j; e;e; =0 fori# j;
(ZZZ) AJ’ = ejR = R@j,’
() e; is the identity of the ring A;.

Proof. (ii) follows from Proposition 6.2.7.
(ili) A; = e;R = Re; as in Proposition 6.2.7 since A; <, R and A; <, R.

(iv) Let x € Aj. Then = = e;t; = tye; for some t,ty. Then e;jz = e?tl =
ejt1 = v and ze; = tge? = tye; = x. Thus ze; = e;jx = x for all z € Aj.
Since e; € A;, it follows that e; is the identity of the ring A;.

(i) Let © € R. Then ez = ejx = ej(e;r) = (e;x)e; since ez € A
and e; is the identity of A;. Also ze; = xe?(we;)e; = ej(we;) similarly. By
associativity, e;z = ze; for all z € R, so e; € C(R). O

Definition 6.2.12. Such an e; € C(R) is called a central idempotent.

6.3 Annihilators and Minimal Right Ideals

Definitions 6.3.1. Let @ # S C Mg. We define the right annihilator of S
to be r(S) := {r € R|Sr = 0}. Clearly, r(S) <, R. When S is a submodule
of M, r(S) < R. {(S), the left annihilator of S, is defined analagously when
M is a left R-module.

In most applications, S C R itself, and so we can consider both r(S) and

°S).

Definition 6.3.2. A non-zero right ideal M of a ring R is a minimal right
ideal if whenever M' C M, M’ <, R, it follows that M’ = 0.
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If R has 1 then the minimal right ideals of R are precisely the irreducible
submodules of Rpg.

Lemma 6.3.3. Let M be a minimal right ideal of a ring R. Then either
M? =0 or M = eR from some e = e* € M.

Proof. Suppose M? # 0. Then Ja € M such that aM # 0. aM <, R
and aM C M since a € M. So aM = M. Thus Jde € M such that a = ae.
a#0=e#0. Also a = ae = ae?. So ale — e?) = 0.

Now consider MNr(a). MNr(a) <, Rand MNr(a) € M. So MNr(a) =0
or M. Suppose for a contradiction that M Nr(a) = M. So M C r(a), so
aM = 0. Thus M Nr(a) = 0.

Bute—e?€ MNr(a)=0,s0e=c? Now 0 # e* € eR. So eR # 0. But
eR <, Rand eR C M since e € M. Thus eR = M as required. O

Example 6.3.4. Take R := (% 8) Consider M; = (8 %), My =

(8 (%) Both M, M, are minimal right ideals. Now M? = 0, My = eR

00
where e := (O 1).

Definition 6.3.5. A ring with no non-zero nilpotent ideal and the descending
chain condition on right ideals is called a semi-simple Artinian ring.

Note that by Lemma 6.1.3(ii) and symmetry such a ring has no non-zero
nilpotent right or left ideals.

Remarks 6.3.6. (i) The left-right symmetry of semi-simple Artinian rings
will be established later.

(ii) We will justify the term “Artinian” by showing the existence of an
identity.

(iii) We shall not define “semi-simple” on its own, but in this context it can
be thought of as meaning a direct sum of simple rings.

Proposition 6.3.7. Let R be a semi-simple Artinian ring and I <, R. Then
I =¢eR for somee=¢e*¢€ I.
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Proof. By the minimum condition every non-zero right ideal of R con-
tains a minimal right ideal. Hence, by Lemma 6.3.3, since R contains non
non-zero nilpotent right ideal, every non-zero right ideal of R contains a non-
zero idempotent.

Now if I = 0 then the result is trivial with e = 0, so assume that [ # 0.
Let £ be the set of all non-zero idempotents in /. By the above, £ # @. We
claim that there is an idempotent e € &€ such that I Nr(e) = 0.

Suppose not. Let I Nr(z) be minimal in the set S := {I Nr(z)|x € £}.
By assumption, I Nr(z) # 0. So I Nr(z) contains a non-zero idempotent z’.
So (2/)? =72/, 22/ = 0. Consider 2y = z + 2/ — /2. z; € [ since 2,2’ € . We
have

nz=(z+2 —2Z2)z2=z24+722-22="=2

So, in particular, z; # 0.
27 =(z+2 227 =) =2,
S0
L=unz=2-22)=2+2 —22=2.
Thus z; € £. We shall now show that
r(z)NICr(z)NI (6.3.1)
ter(zn)NI=z2t=0=2x1t=0= 2t =0, since zz; =z =t €r(z)NI.
Also, 2/ € r(z1) NI but 2/ € r(2) NI since 212 = 2’ # 0. This establishes

(6.3.1). But (6.3.1) contradicts the minimality of 7(z) N I. This proves our
claim. So there is an e € € such that I Nr(e) = 0.

Now define K := {x —ex|z € I}. Then K <, R, K C I, and eK = 0.
So K CInr(e)=0. Thus z = ex for all z € I. Hence I C eR. But clearly
eRC Isinceeel and I <, R. So I = eR as required. OJ

Corollary 6.3.8. Let R be a semi-simple Artinian ring and A < R. Then
there is an e = e* € A such that A = eR = Re.

Proof. By Proposition 6.3.7, A = eR for some e = ¢% € A, since A <, R.
Let K := {z —ze|z € A}. Then K <, R, since A < R. Also, Ke = 0, so
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KeR =0 and K? =0 since K C A =¢eR. So K = 0 as R has no non-zero
nilpotent left ideal. Thus z = ze for all x € A. So A C Re. But Re C A
since e € Aand A <, R. Thus A = eR = Re. O

Corollary 6.3.9. A semi-simple Artinian ring has identity.
Proof. Take A = R in Corollary 6.3.8. O
Theorem 6.3.10. The following are equivalent for any ring R:
(i) R is semi-simple Artinian ring;
(i) R has 1 and Rpg is completely reducible.

Proof. (i)=-(ii). By Corollary 6.3.9 R has 1. Let I <, R. By Proposition
6.3.7 I = eR for some e = e € I. By Peirce Decomposition, Corollary 6.2.4,
I is a direct summand of R. So every submodule of Rp is a direct summand
of Rg. So by Theorem 4.2.6, Rg is completely reducible.

(ii)=(1). We have R = @,., 15, I\ an irreducible submodule of Rp.
Then 1 =z + - -+ + x,, for some z; € I),. Now for any = € R,

r=lv=x2+---+z,x €l - DIy,

so R=1,,®---&1I,, and |A| < co. So by Corollary 5.2.12, Ry has the
descending chain condition on R-submodules, i.e. R has the descending chain
condition on right ideals. Now let T be a nilpotent right ideal of R. Then
R =T¢& K for some K <, R by Theorem 4.2.6. We have 1 = ¢+ k for some
teT, ke K. tis nilpotent so t" = 0 for some n > 1. Thus (1 — k)" = 0.
Sol—nk+---+k"=0,1=nk—---Fk"€ K. So K=R,soT =0 as
required. ]

Remark 6.3.11. Note that we have shown R=1, ®--- & [, a finite direct
sum of minimal right ideals, when R is semi-simple Artinian.

Corollary 6.3.12. A direct sum of matriz rings over division Tings is a
semi-simple Artinian ring.

Proof. It was shown in Theorem 4.2.6 that for such a ring Rg is com-
pletely reducible. O
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6.4 Ideals in Semi-Simple Artinian Rings

Proposition 6.4.1. Let R be a semi-simple Artinian ring:

(i) Every ideal of R is generated by an idempotent lying in the centre of
R.

(ii) There is a 1-1 correspondence between ideals of R and idempotents in

C(R).

Proof. (i) See proofs of of Corollary 6.3.8 and Proposition 6.2.11.

(ii) For each e € C(R) define f(e) := eR < R. Check that f is the

required 1-1 correspondence. O
Definition 6.4.2. [ < Ris a minimal idealif [ #0,I' CI,I' A R=1'"=0.

Theorem 6.4.3. Let R be a semi-simple Artinian ring. Then R has a finite
number of minimal ideals, their sum is direct, and is R.

Proof. Note that at least one minimal ideal exists since R has the de-
scending chain condition on right ideals . Let S; be a minimal ideal of R.
Then by Proposition 6.4.1, S} = e;R = Rey, ¢; = €2 € C(R). Note that
(1—e)*=1-¢, 1—¢ € C(R), and we have a direct sum of ideals
R=5&T,, T :=(1—-e)R=R(1—e). (Note that T} is two-sided.)

If T7 # 0, T contains a minimal S, < R. As above, R =5, & K, K I R.
Now
T1 :TlﬂR:Tlﬂ(SQEBK):SQEB(TlﬂK):SQEBTQ

by the Dedekind Modular Law. We have R = Sy & T} = S1 @® Sy @ 1. If
T, # 0 proceed inductively.

We have T1 2 T, 2D T5 2 ..., so by descending chain condition this pro-
cess must terminate. It can only stop when some T, = 0. At this stage we
have R =5, & ---® .S,,, a finite direct sum of minimal ideals.

Now let S be a minimal ideal of R. We have SR # 0 since R has 1. So

SS; # 0 for some j, 1 < j < m. Now SS; < R and SS; C S, §S; C S;.
Since both S and S; are minimal, we have S = §5; = S;. O
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6.5 Simple Artinian Rings

Let R be a simple ring. Consider R?. R?> < R so R? = 0 or R. Suppose
R? = 0. Then zy = 0 for all z,y € R. So any additive subgroup of R is an
ideal of R. Thus R has no additive subgroups other than 0 and R. Thus the
additive group of R must be cyclic of prime order p; the ring structure of
R is completely determined: R = {0,1,...,p — 1} with addition modulo p,
multiplication identically 0.

Thus, when studying simple rings, we assume that R? = R. Therefore,

in this case, N (R) = 0.

Note that a simple Artinian ring is semi-simple Artinian.

Lemma 6.5.1. Let R be a semi-simple Artinian ring and 0 # I < R. Then
I itself is a semi-simple Artinian ring. In particular, when I is a minimal
ideal, I is a simple Artinian ring.

Proof. We claim that K <, I = K <, R.

We have I = eR = Re where ¢ = ¢? € I by Corollary 6.3.8. Now k € K,
r € E = kr = (ke)r since e is the identity of I and k € I. So kr = k(er) € K
since er € eR = I. This proves the claim.

It follows that I considered as a ring has the descending chain condition
on right ideals and no non-zero nilpotent ideal.

If  is minimal then by the above it must be a simple Artinian ring. (Note
that I? = I since I? # 0 — i.e., I is a simple ring of the type that we are
considering. 0

Theorem 6.5.2. Let R be a semi-simple Artinian ring. Then R is a direct
sum of simple Artinian rings and this representation is unique.

Proof. By Theorem 6.4.3 and Lemma 6.5.1 above we have R = S; ®
-+ @ Sy, where the S; are minimal ideals of R, hence simple Artinian rings.

The uniqueness follows from the fact that the S; are precisely the minimal
ideals of R. U
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6.6 Modules over Semi-Simple Artinian Rings

Proposition 6.6.1. Let R be a semi-simple Artinian ring. Let Mg be unital
and 1rreducible. Then M = I as R-modules, where I <, R.

Proof. M = %, K a maximal right ideal of R, by Exercise Sheet 3. By
Corollary 6.2.4 and Proposition 6.3.7 (or by Theorem 6.3.10 and Theorem
4.2.6), R = K&I for some I <9, R. Therefore, % =] (givenr € R,r = k+ux,
k € K, x € I unique; consider r — x). So M = % > | as R-modules. O
Theorem 6.6.2. Every non-zero unital module over a semi-simple Artinian
ring is completely reducible.

Proof. Let R be semi-simple Artinian. We have R = 1 & ---® I, a
direct sum of minimal right ideals of R (see Remark 6.3.11). Let 0 # Mg be
unital and let m € M. Then m = ml € ml; + --- + ml,. We claim that
each ml; is either irreducible or 0.

Consider the map 6 : I; — ml; given by 6(z) = mx for x € I;. Clearly 6
is an R-homomorphism onto mI;. ker § is a submodule of (I;)z. So kerf =0
or I;. This implies that either 6 is an isomorphism or the zero map. This
proves the claim.

Thus, m € ) irreducible submodules. So M = ) irreducible submod-
ules. So M is completely reducible. O

6.7 The Artin-Wedderburn Theorem

Definitions 6.7.1. Let M be a right R-module. An R-homomorphism 6 :
M — M is called an R-endomorphism. The set of all R-endomorphisms of
M is denoted by Er(M) or simply £(M). On Er(M) we define a sum and
product as follows. Let 0, ¢ € Egr(M). Define 6 + ¢ and ¢ by

(0 +@)(m) := 0(m) + ¢(m)
(60)(m) := 8(p(m))

for m € M. Check that (6 + ¢), (6¢) € Er(M). It is routine to check that
Er(M) is a ring under these operations.

Exercise 6.7.2. Show that if M; = M, as R-modules then Egr(M;) =
Er(Ms) as rings.
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More generally,

Definitions 6.7.3. For right R-modules X and Y denote the set of all R-
homomorphisms X — Y by Homg(X,Y). For a,3 € Homg(X,Y') define
a+ [ as above. Hompg(X,Y') is easily seen to be an Abelian group.

Definitions 6.7.4. Let V=V, & -V, W =W, & ---® W, be right R-
modules. Let €, : V; — V be the injection map e;(v;) :== (0,...,0,v;,0,...,0)
for v; € V; (the v; is in the jth place).

Let m; : W — W, be the projection map, m;(wy, ..., wy) = w;, wy € Wk.
For a module M, write M™ for M @ --- @ M (n times).

Lemma 6.7.5. LetV =V ®---dV,,, W =W - --®&W,, be right R-modules.

(1) If ¢;j € Hompg(V;, W;) are given for each 1 <i <m, 1 < j <n, then
we can define ¢ € Hompg(V, W) by

¢11 oo Pin U1

O(V1, .., Uy) = S :

Om1 - Pmn Un

= (@r1v1 + -+ P1alns -+, O V1 + -+ PranUn).
(ii)
Hompg(Vi,W1) ... Homg(V,, W)
Hompg(V, W) = : . :

Homg(V4,W,,) ... Homg(V,, W)

as Abelian groups.

(#i) In particular, for a right R-module M we have
Er(M) ... Er(M)

as rings.
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Proof. (i) Easy to see that ¢ as defined above does indeed belong to
Hompg(V, W).

(ii) Let v € Hompg(V, W). Define ¢;; := m1pe;. Then 1;; € Hompg(V;, W;).

Define a map

Homg(Vy,W1) ... Homg(V,, W)
O : Homg(V, W) — : :
Hompg(Vy,W,,) ... Homg(V,,W,,)

by ©(¢) := (14;). It is easy to see that © is an additive group homomorphism.
O is injective:
Q/Jij = 0Vi,j = Wing = 0 for all 1,7
= 1e; =0 for all j
=1 =0
© is surjective: let (6;; be given with 6;; € Hompg(V;, W;). Define 0 : V. — W
by
P11 . O1n U1
Gu, - yom) =[5 :
¢m1 e ¢mn Un
Then 6 € Hompg(V, W) by part (i). For v; € V; we have
7Ti(9€j(Uj) = 7T(9(O, Ce ,O,’Uj, O, cey O)
= mi(015(v)), - - Omj(v5))

So m;fle; = 0;;. Hence © is an isomorphism.

(iii) We must check that when V =W = M then © defined above is a
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ring homomorphism. Let 6, ¢ € Eg(M™). We have
(09)i; = mi(0d)e;

= 7Ti0 idM(n) ¢€j
= 7Ti9 (ZSI{W}C) ¢<€j
k=1
= (mifler) (mige;)
k=1

= (0u)(d15)

= ((00)i) = > _(6ix) (615)

k=1

= O(00) = 6(0)6(¢)
So O is a ring homomorphism. O
Note that if 8 : Mr — Kpg is an isomorphism then the inverse map exists
and is an isomorphism from K onto M.

Corollary 6.7.6. (Schur’s Lemma.) Let R be a ring and Mg an irreducible
module. Then Eg(M) is a division ring.

Proof. Let 0 # 6 € Eg(M). We must show that 6 is an isomorphism.
f is injective since ker § is a submodule of M, so kerf = 0 or M. But
ker = M = 6 = 0, a contradiction, so ker § = 0 and 6 is injective.

6 is surjective since 6(M) is a submodule of M. As above, §(M) # 0, so
(M) = M and 6 is surjective.

Thus 6 is an isomorphism. Thus every non-zero element of (M) has an
inverse, and so Ex(M) is a division ring. O

Lemma 6.7.7. Let R be a simple ring with R?> = R. Then any two minimal
right ideals of R are isomorphic as R-modules.

Proof. Let Iy, I; be two minimal right ideals of R. Then r(I;) < R and
r(I1) # R. Sor(l;) =0,s0 I1I; # 0. So 3z € I; such that I, # 0. I, <, R
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and xly C I since I; <, R. So xl, = I;. Now define a map 6 : I, — [ by
O(r) = ar for r € I,. Check that ker # = 0 so that € is an isomorphism from
I, onto z1y = 1. O

Lemma 6.7.8. Let R be a ring with 1. Then R = Er(RR) as rings.

Proof. Let x € R. Define p, € Eg(Rg) by pu(r) = xr for r € R. Fopr
r,s € R,
pe(r+s)=x(r+s)=axr+xs = p.(r) + p.(s)
and
pe(1t) = x(rt) = (27r)t = po(r)t.
So we do indeed have that p, € Er(RR).

Now define © : R — Eg(Rg) by ©(x) = p, for x € R. We claim that ©

is an isomorphism of rings. Let x1,x5 € R. Then for any r € R,

Pr1+z2 (T) + ("L‘l + 1'2)7’ = T1T + ToT = Pgy (T) + Pay (T) = (pml + ng)(r),

SO Paytas = Pz, + Pags and hence O(x; 4+ x2) = O(z1) + O(x2). Also

Pxizo (T) + ("L‘le)r =1 (:E?T) = P, (p’m (T’)) = (p’mpm)(r)a

so O(x1x9) = O(x1)O(z2). O is injective since p, = 0 = p,(1) = z1 =
0 = x = 0. O is surjective: let ¢ € Er(RR). Let y := ¢(1) € R. Then
o(r) = ¢(1r) = yr = py(r), for all r € R. So ¢ = p,. Thus O is an
isomorphism of rings. U

Remark 6.7.9. If we work with left modules then we would have to define
p(r) = rz. But then we get an anti-isomorphism between R and Er(Rg):
O(zy) = O(y)O(z). To get an isomorphsim we need to write our maps on
the right.

Theorem 6.7.10. (The Artin-Wedderburn Theorem.) R is semi-simple Ar-
tinian if and only if R = S1®- - -® Sy, where S; = M,,(D;) for some integers
n; and division rings D;.

Proof. R = 51®---®S,,, S; simple Artinian by Theorem 6.5.2. S; = [1®
@ 1I,,, a direct sum of minimal right ideal, for some integer n;, by Remark
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6.3.11. But [; = I for all j, k, by Lemma 6.7.7. Thus S, =L & ---® [ (0
summands). Thus,

S; = Es, ((Si)s;) by Lemma 6.7.8

~ £, (If"”)

=~ M,, (€s,(11)) by Lemma 6.7.5

where D; := Eg,(I1) is a division ring by Schur’s Lemma. O
Theorem 6.7.11. A semi-simple Artinian ring is left-right symmetric.

Proof. Right-hand conditions < R is a direct sum of matrix rings over
division rings < left-hand conditions.

For another proof, see Exercise Sheet 5, Question 7. O
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7 Wedderburn’s Theorem on Finite Division
Rings
In this chapter we prove that every finite division ring is a field.

Our strategy is to let D be a finite division ring. We show that |D| = ¢"
for some ¢ > 2, n > 1. If we set D* := D\{0} then D* is not an Abelian
group. Counting elements in each conjugacy class of D* we get an equation

q l=qg—1+ Z 7{1”(@)_1.
n(a)|n,n(a)#n

We then show that such an equation is impossible on number theoretic
grounds.

7.1 Roots of Unity

Definitions 7.1.1. (i) 0 is called a primitive nth root of unity if 6" = 1
and 0™ # 1 for all m < n, where m and n are integers.

(ii) @,(x) := [[(z — @), where the product is taken over all primitive nth
roots of unity is called the nth cyclotomic polynomial.

We note that the primitive nth roots of unity exist because of y =
e?mki/n ¢ C. Thus

Oy(x)=x—1
Oy(z) = +1
Py(z) =2+ +1
Py(z) =2 +1

Lemma 7.1.2. Fvery cyclotomic polynomial s monic with integer coeffi-
cients.

Proof. First note that

2" —1 =[] ®al2). (7.1.1)

d|n
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Now we prove our claim by induction on n. If n = 1, ®;(z) = z — 1. So,
assume all @, (x) monic with integer coefficients for k& < n. Now we can write

2" —1=,(x) [ Pal2).
d|n,d#n

By the induction hypothesis we can write 2™ — 1 = @, (z) f(x), where f(x)
is monic with coefficients in Z. Therefore, we may assume that

f(@x)=a2"+a 2"+ + ayz + aq,

a; € Z, and
CI)n(.I') = bmxm + bmflxmi1 + - F blx + b07

b; € C. We see that
2" —1=b,a™" + (b1 + bmag,l)xm”*l + -+ apbp.

Comparing these two polynomials, we have b,,, = 1, so ®,, is monic; m+¥¢ = n;
bm_1+ bpar_1 =0,80 b,,_1 =—1-a,_1 € Z. By continuing this method, we
see that b; € Z for 0 < i < m. O

Lemma 7.1.3. Ifd|n and d # n then

" —1

Cu(2) |5

in the sense that the quotient is polynomial with integer coefficients.

Proof. By (7.1.1) we can write

o~ 1 _ Tlgn ®ala)
=1 T @)

Because every divisor of d is a divisor of n, we have

Tl ) I @«
4

xd—1
&|nd’




So f'(x) is a monic polynomial in Z[x] by the previous lemma. So

" —1

On () x?—1

Lemma 7.1.4. Let q,n, m be positive integers, ¢ > 1. Then
" —1¢" — 1 & min.

Proof. («). Evident.

(=). We may assume that n > m. Thenn =km+7r,0<r <m, k> 0.
Now

qn -1 _ qkmqr -1
gn—=1 ¢n -1
qkmqrqr + qr -1

qgm —1
A (VA S
qm —1 qgm —1
By our assumption, the LHS is an integer, and % € 7, so % €7,
so r = 0. Thus m|n. O

7.2 Group Theory

Definitions 7.2.1. Let G be a group. We say that x,y € G are conjugate if
Jda € G such that x = a 'ya, and so we can define an equivalence relation of
conjugacy, and the corresponding conjugacy classes: ¢ := {a"'zala € G}.
We define

C*(z) = {a € Glax = za}

to be the centralizer of x in G. The centre of G is
Z(G) :={g € G|Vh € G, gh = hg}.
Proposition 7.2.2. For G a group, v € G, C*(z) is a subgroup of G.

Theorem 7.2.3. Let G be a finite group. Then |2%| = |G : C*(z)].
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Proof. Let a,b € G. Then

lra=b"tab < zab ™t = ab 'z

& (ab™') € C*(2)
& C*(z)a = C"(x)b

G

a

So there are as many elements in 2 as there are cosets of C*(x). O

7.3 Finite Division Rings

Lemma 7.3.1. Let K be a non-zero subring of a finite division ring D. Then
K is also a division ring.

Proof. Exercise. Need 1p € K and 27! € K for x € K, x # 0. O
Corollary 7.3.2. The centre of a finite division ring is a field.

Lemma 7.3.3. Let D be a finite division ring with centre C'. Then |D| = ¢
where ¢ = |C| > 1 and n is some positive integer.

Proof. C is a field. We can view D as a vector space over C'. Let
n = dimg D, with dy,...,d, a basis for D over C. So every element of D is
uniquely expressible as ¢;d;+- - -+¢,d, with ¢; € C. So we have |D| =¢". O

Theorem 7.3.4. (Wedderburn 1905.) A finite division ring is necessarily a
field.

Proof. Let D be a finite division ring with centre C, |C| = g. Then
|D| =q", ¢ > 2,n > 1, by Lemma 7.3.3. We want to show that D = C, or,
equivalently, that n = 1.

Assume that n > 1. Let a € D*, C(a) := {z € D|za = ax}. Then C(a)
is a subring of D. By Lemma 7.3.1, it is a division ring with C'(A) 2 C.
So |C(a)| = ¢"® for some n(a) > 1. C*(a) := C(a)\{0} is a multiplicative
subgroup of D*. We have |C*(a)| = ¢"® — 1, |D*| = ¢" — 1. By Lagrange’s
Theorem, ¢™® — 1|¢" — 1. Lemma 7.1.4 implies that n(a)|n. Theorem 7.2.3
applied to D* implies that the number of elements conjugate to a = the index
of C*(a) in D* = qf{:;%ll. Now a € C*(a) < n(a) = n. By counting elements

of D*: o1
"—1l=q-1+ > o (7.3.1)

n(a)|n,n(a)7#n

93



where the sum is carried out for one a in each conjugacy class for elements not

in the centre. Now ®,,(¢) = ¢"—1 by Lemma 7.1.2; n(a) # n = ®,,(q) qf{;;%
by Lemma 7.1.3. By (7.3.1),
®,(q) =q—1. (7.3.2)

We have ®,(q) = [[(q — @), 6 a primitive nth root of 1. So |®,(q)| =
[Tlg — 0| > ¢ — 1 since n > 1. This contradicts (7.3.2). So the assumption
n > 11is false, and D = C' is a field. O

To answer the question of what finite fields look like, we need Galois
Theory.
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8 Some Elementary Homological Algebra

In this section all rings have 1 and all modules are unital.

8.1 Free Modules
Definitions 8.1.1. A right R-module F'is free if

(i) F is generated by a subset S C F;
(ii) >, s =0« r; =0 for all such finite sums with s; € S, r; € R.

We say that free basis for F'. (Convention: {0} is the free module generated
by @.)

An element of F' has a unique epression as s171+- - -+ 7% A typical free
module is isomorphic to (R@®--- @ R®...)r. Fg free and finitely generated
= FrR= (R®---® R)g (a finite direct sum).

The Z-module %, n > 1, cannot be free: for suppose that a = a + nZ is
an element of a free basis. Then an = 0, with n # 0, a contradiction.

8.2 The Canonical Free Module
Definition 8.2.1. Let A be a set indexed by A. Let Fj4 be the set of all

formal sums
{E axT

AEA

ay € A,ry € R, finitely
many 7 7# 0

with Y cpaxra = Doy cp @rnsy € 7a = sy for all A € A. We make Fj into the
canonical free right R-module by defining

Z axry + Za)\s)\ = Za,\(m + s))
(Z a,wu) roi= Za)\(rw)

A is a free basis for F4; we identify a € A with al € Fjy4.

and

Proposition 8.2.2. Every right R-module is the homomorphic image of a
free right R-module.
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Proof. Let M be a free right R-module. Index the elements of M
and form the free module F);, considering M merely as a set. Elements
of Fy are formal sums of the form > (m;)r;, m; € M, r; € R. Define
0: Fy — M : > (my)r; — Y, myr; € M. This map is well-defined and is an
R-homomorphism by the definition of Fj, O

8.3 Exact Sequences

Definitions 8.3.1. Let M; be a sequence of right R-modules and f; a se-
quence of R-homomorphisms M; — M, ;. The sequence (which may be
finite or infinite)

L z+1E>MzL> z—lb)
is said to be exact if im ;.1 = ker f; for all i. A short exact sequence is an
exact sequence of the form

0— M 1o M 2 7 — 0.

In a short exact sequence, since 0 — M’ L Mis exact, ker f = 0 and so
f is a monomorphism (an injective homomorphism). Since M LM — 0
is exact, im g = M” and ¢ is an epimorphism (a surjective homomorphism).

M = imf = f(M') C M, so M is isomorphic to a submodule of M.

Also
M M

N~

~kerg  imf°

Given modules A and B we can construct the short exact sequence

A

0—B-A4 2 0,

where 7 is the inclusion map and 7 the natural projection.
Proposition 8.3.2. Given a short exact sequence
0—A-%B-Lc—o

of right R-modules the following are equivalent:
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(i) im« is a direct summand of B;
(i1) 3 an R-homomorphism v : C' — B with fy = id¢;
(#i) 3 an R-homomorphism 6 : B — A with da = id 4.

Proof. (i)=(ii). Let B = im«a & By, By a submodule of B. So B =
ker 3 & B;. Let (31 := (3|B,. We have

C = B(B) = B(ker § @ By) = By = 1By,

so 31 is an epimorphism. Also ker §; C ker 5N By = 0. Thus f; is an iso-
morphism of B; onto C. Define v := 8;' : C — B. Then vy = id¢.

(ii)=(i). We shall show that B = ker 3 ® y(3(B). If b € B, b = (b —
vBb) + B(b). b—~B(b) € ker § since
B(b—~B(b)) = B(b) — ByB(b) = B(b) —ide B(b) = (b) — B(b) =0,
and if z € ker FN~B(B) then z = v5(b) for some b € B, and (3(z) = 0. Thus
0=p5(z) = Br8(b) = B(b),
so z=0, B=ker 3 ®8(B) =ima®y3(B).
Similarly, we can show the equivalence of (i) and (iii). O
Definition 8.3.3. We say that the short exact sequence
0—a-BLc—o

splits if any one (and hence all) of the above conditions holds.

Note that if the above sequence splits then B = ima ¢ By, By = C} i.e.,
B = A@ C, an external direct sum.

8.4 Projective Modules

Definition 8.4.1. A right R-module P is said to be projective if given any
diagram of the form
P

lu
A—"+ B——=0 exact
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there is an R-homomorphism i : P — A such that p = 7p, ie. p(z) =
m(a(x)) for all z € P.

P

M//l

. I

l/ﬂ'
A—— B ——=0 exact

Lemma 8.4.2. A free module is projective.

Proof. Let F be a free module with a free basis {e,}. Consider

F

ﬁ 7/
// lu

i’ﬂ'
A—— B —0 exact

Let b, := p(ey). As m is an epimorphism we can choose a, € A such that
bo = m(ay). Define fi : ' — Aby 5(>°, €aTa) =D, @aTa; Ta € R. Then f1
is an R-homomorphism F' — A and

So i = . O

We shall see that a projective module need not be free.

Lemma 8.4.3. Let P,, o € A, be right R-modules. Then €
gectiwe if and only if all P, are projective.

ae Pa 1s pro-
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Proof. Let ig be the inclusion map Ps —
jection map @, ., Po — Ps-

aea Pa; let pg be the pro-

a€EA

(<) Consider the diagram

B 0 exact

This gives rise to diagrams

P,
v /
fo;/ lfla
# i
A—— B ——=0 exact

Since each P, is projective there are R-homomorphisms f, : P, — A such
that fi, = 7f,. Define f : Boca Po = Aby f =3 cr faPa. (This makes
sense: for any z € @, P we have p,(z) = 0 for all except a finite number
of a’s.) We have mf =", ) TfaPa = D pen fiaTa = [ as required.

(=) For any 3 € A consider
Pg
s 4 lfﬁ
+ T
A—— B ——=0 exact

This gives rise to
~ @QEA PO‘
L lfﬁpﬁ

£ o

A
Since P, Pu is projective, there is an R-homomorphism f: DocrPo— A
such that 7f = fsps. So wfig = fapsisg = fs and fig maps P3 — A. Thus
Pg is projective. O

B 0 exact

Proposition 8.4.4. The following are equivalent:

(i) P is a projective module;
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(ii) P is a direct summand of a free module;
(iii) every short exact sequence 0 — M' — M — P — 0 splits.
Proof. (iii)=-(ii). Consider the short exact sequence
0— Kp— Fp — P — 0,

where Kp is the kernel of the canonical map Fp — P. Since this short exact
sequence splits we have Fp = P& Kp.

(ii)=(i). Follows from Lemma 8.4.2 and Lemma 8.4.3.

(i)=(iii). Consider

0 M’ M P 0 exact

Since P is projective, there is an R-homomorphism i : P — M such that
gii = idp. Thus the given short exact sequence splits. O

Theorem 8.4.5. The following are equivalent:
(i) R is semi-simple Artinian;
(i1) every unital right R-module is projective.

Proof. (i)=-(ii). Let M be a right R-module. By Theorem 6.6.2,
M = ,cp My, each M), irreducible. Proposition 6.6.1 implies that each
M, is isomorphic to a right ideal of R. A right ideal of R is a direct sum-
mand of R since Rp is completely reducible. So, by Lemma 8.4.2 and Lemma
8.4.3, right ideals of R are projective. So M is projective by Lemma 8.4.3.

(ii)=(i). Let I <, R. Consider the short exact sequence

R

0—>[L>RL>——>O.

This short exact sequence splits since % is a projective R-module. So R =

I1® K, K < R. Thus I is a direct summand of R. So Rpg is completely
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reducible and thus R is semi-simple Artinian. O

If R is a ring with 1, then all right R-modules are free if and only if R is
a division ring (Exercise Sheet 5, Question 8).

Example 8.4.6. Projective # free. Let R = GZZ, A= g—%, B = 2—%. Then
R =A@ B, and A and B are projective by Lemma 8.4.2 and Lemma 8.4.3.

A, B cannot be free since they have fewer elements than R.
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