
 - 1 - 

UNIVERSITY OF WARWICK 
 

MA3B8 COMPLEX ANALYSIS 
 

Autumn Term 2002 
 

Lectured by Doctor Young-Eun Choi 
 

Typed by Tim Sullivan 
 



 - 2 - 

INDEX 
 
1. Differentiability and the Cauchy-Riemann Equations 3
2. Complex Contour Integration 9
3. Poles, Residues and Integrals 24
4. Conformal Maps 37
5. Harmonic Maps 51
 



 - 3 - 

1. DIFFERENTIABILITY AND THE CAUCHY-RIEMANN EQUATIONS 
 
Definitions. A domain C⊆D  is an open subset of the complex plane. I.e., 
 

D∈∀ 0z  0>∃ε  such that { } D⊆<−∈ ε0zzz C . 
 
We denote { }ε<−∈ 0zzz C  by ( )0zBε  and call it the ε -ball centred at 0z . 
 
Definitions. A function C→D:f  is called differentiable (or holomorphic) at D∈0z  if 
 

( ) ( )
δ
δ

δ
00

0
lim zfzf −+

→
 

 
exists, in which case the limit is called the derivative of f  at 0z , denoted ( )0zf ′ . 
 
Exercises. Show that if ( ) ( ) ( ) ( ) ( )yxivyxuzivzuzf ,, +=+=  
(1)  
 

( ) ( ) ( ) ( )0000in  0
,,lim 00 yxiyx x

v
x
u

h
zfhzf

h ∂
∂

∂
∂−+

→
+=

R
 

 
(2) 
 

( ) ( ) ( ) ( )0000in  0
,,lim 00 yxiyx y

u
y
v

ik
zfikzf

k ∂
∂

∂
∂−+

→
−=

R
 

 
and hence that the Cauchy-Riemann equations hold at 0z : 
 

y
v

x
u

∂
∂

∂
∂ =  and x

v
y
u

∂
∂

∂
∂ −=  

 
Theorem 1.1. Let C→+= D:ivuf . Suppose that 
(1) y

v
x
v

y
u

x
u

∂
∂

∂
∂

∂
∂

∂
∂ ,,,  all exist in some neighborhood of ( ) D∈00 , yx  and are continuous at 

( )00 , yx ; 
(2) vu,  satisfy the Cauchy-Riemann equations. 
Then f  is differentiable at ( )00 , yx . 
 
Later we will see that if is (once) differentiable then it is differentiable infinitely many 
times. 
 
Proposition 1.2. If ivuf +=  is holomorphic then vu,  are harmonic functions. 
 
Proof.  
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( ) ( ) yx
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∂∂
∂

∂
∂
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∂
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( ) ( ) xy
v

x
v

yy
u

yy
u

∂∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ −=−==

2

2

2  
 

 
The equation 02

2

2

2

=+
∂
∂

∂
∂

y
f

x
f  is Laplace’s equation for RR →2:f . 

 
We can perform an identification of C  with 2R  so that 
 

22
||

:
RR

C→
U
Df  

 
Recall. Let 22: RR →⊆DF  and ( ) D∈00, yx . We say F  is differentiable at ( )00 , yx  is 
there exists a linear function ( )

22
, :

00
RR →yxL  such that 

 

( )

( ) ( ) ( )( )
( ) 0

,
,,,

lim 00 ,0000

0,
=

−−++
→ kh

khLyxFkyhxF yx

kh
. 

 
( )00 , yxL  is called the derivative of F  at ( )00 , yx , ( )00 , yxdF . 

 
If ( )21, FFF =  is differentiable at ( )00 , yx  then y

F
x

F
y
F

x
F

∂
∂

∂
∂

∂
∂

∂
∂ 2211 ,,,  exist at ( )00 , yx  and 

 

( )
( )00

22

11

00

,

,

yxy
F

x
F

y
F

x
F

yxL 









=

∂
∂

∂
∂

∂
∂

∂
∂

 

 
If for ( ) 2

21 :, R→= DFFF  the partial derivatives y
F

x
F

y
F

x
F

∂
∂

∂
∂

∂
∂

∂
∂ 2211 ,,,  exist in a 

neighbourhood of ( )00 , yx  and are continuous at ( )00 , yx  then F  is differentiable at 
( )00 , yx . 
 
If C→D:f , ivuf += , is holomorphic then consider the corresponding 2R -valued 
function; it derivative matrix will be of the form 
 








 −
ab
ba

. 

 
Given iba +  we have a map ( )zibaz +→ a:CC  and a linear map :22 RR →  
( ) ( )aybxbyaxyx +− ,, a . 
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Examples. Power series such as 
 

( ) ∑∞

=
=

0n
n

nzazf , C∈na , 

( ) ( )∑∞

=
−=

1 0n
n

n zzbzg , C∈nbz ,0 , 

 
are holomorphic functions. 
 
Theorem 1.3. For any power series ( ) ( )∑∞

=
−=

0 0n
n

n zzazf  [ ]∞∈∃ ,0R  called the radius 

of convergence such that 
(1) ( )∑∞

=
−

0 0n
n

n zza  converges absolutely for Rzz <− 0 ; 

(2) ( )∑∞

=
−

0 0n
n

n zza  diverges for Rzz >− 0 . 

 

( )nnn

n
n

n

aa

aR

1

1

lim1

suplim1

+∞→

∞→

=

=
 

 
if the limit exists. 
 
Theorem 1.4. Let ( ) ( )∑∞

=
−=

0 0n
n

n zzazf  have radius of convergence 0>R . Then f  is 

holomorphic on ( )0zBR  with derivative ( ) ( )∑∞

=

−−=′
1

1
0n

n
n zznazf , and this derived 

series has radius of convergence R . 
 
Example. The real function ( ) xexf =  has the Taylor expansion 
 

KK ++++++= !!3!2
321 n

xxxx nxe  
 
and ∞=R , so we define 
 

KK ++++++= !!3!2
321 n

zzzz nze  
 
Note that for R∈y , 
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( ) ( ) ( )

( ) ( )
yiy

yi

iye
yyyy

iyiyiy

sincos
1

1

!5!3!4!2

!3!2
5342

32

+=

−+−+−+−=

++++=

KK

K

 

 
Also, 
 

wzwz eee =+ , 
( )yiyeeeee xiyxiyxz sincos +=== + . 

 
We would like to define zz loga  as the inverse of zez a . However, there is a 
problem, since zinz ee =+ π2  for Z∈n . inwzeee wzwz π21 =−⇒=⇒= −  for some Z∈n . 
 
Definition. The multi-valued function { } CC →0\:h  that assigns to each w  the values 
( )wh  such that ( ) we wh =  is the logarithm function, log. It is well-defined up to multiples 

of iπ2  
 
How does the exponential function transform the complex plane? 
 

0iy

iiy π20 +

0xe0x 02x
π2
0y→exp

 
 
We can find, for each { }0\C∈w , a z  such that wez =  and π2Im 00 +<≤ yzy . This is 
called choosing a branch of log ; the usual choice is π−  to π . 
 
The function on { }0\ ≤∈ xx RC  that gives the unique C∈z  such that wez =  and 

ππ <<− zIm  is called the principal branch of log  and is denoted Log . 
 
If θirew =  where πθπ <<−  then θirw += logLog , where rlog  is the usual real 
logarithm of r . 
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Exercise. Show { } CRC →≤∈ 0\:Log xx  is holomorphic. (Hint: use the relations 

( ) 22logLogRe yxiyx +=+ , ( ) ( )x
yiyx arctanLogIm =+ .) 

 
The problem of finding a maximal domain on which a given holomorphic function can be 
defined leads to the study of Riemann surfaces. 
 
A distinguishing property of a domain is whether or not it has a “hole”. 
 
Examples. These domains have “holes”: 
(1) 0\C ; 
(2) ( ) { }21, 21

rwzrwzA rr <−<∈= C ; 

(3) ( ) ( )iBB 212 \0 . 
 
Examples. These domains have no “holes”: 
(1) ( )01BD = ; 
(2) C . 
 
Definition. An open set D  is called simply connected if it has no “holes” and multiply 
connected if it has at least one hole. (More precisely, D  is simply connected if 
( ) { }0,1 =zDπ  for all D∈z  – see MA3F1 Introduction to Topology for an explanation of 

the fundamental group.) 
 
Definition. C⊆D  is connected if it cannot be expressed as the disjoint union of two 
non-empty open proper subsets. 
 
Definition. C⊆D  is path connected if any two points D∈′zz,  can be joined by a path 
in D , a continuous [ ] D→ba,:γ  such that ( ) za =γ , ( ) zb ′=γ . 
 
Definition. C⊆D  is step path connected if any two points D∈′zz,  can be joined by a 
step path in D , a path consisting of a finite number of pieces, each of which is parallel to 
either the real or imaginary axis. 
 
Proposition 1.5. A domain C⊆D  is path connected if and only if it is step path 
connected. 
 
Proof. (⇐ ) A step path is a path, so this direction is trivial. 
 
(⇒ ) Suppose D  is path connected and let D∈′zz, . We require a step path from z  to 
z′ . Let [ ] D→1,0:γ  be a path from z  to z′ . For each [ ]1,0∈t  choose a ball 

( ) ( )( ) D⊆tB t γε . [ ] ( ) ( )( )tB tt γε1,0∈U  is a cover of the curve in D . [ ]1,0  is compact, so 

[ ]( )1,0γ  is compact, so this cover admits a finite subcover ( ) ( )( )kt
n
k tB

k
γε1=U . We can 

choose a sequence of points ( )is , 
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nnn tsssst =<<<<= −1211 K  

 
such that [ ]( ) ( ) ( )( )itii tBss

i
γγ ε⊆+1, . We can replace [ ]( )1, +ii ssγ  with a step path in 

( ) ( )( )it tB
i
γε  (since balls are clearly step path connected) to obtain a step path in D . 
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2. COMPLEX CONTOUR INTEGRATION 
 
Definition. Let C→D:f  be a continuous function and let [ ] D→ba,:γ  be a 
(piecewise) 1C  path. Then we define the contour integral of f  over γ  by 
 

( ) ( )( ) ( )∫∫∫ ′==
b

a
dtttfdzzff γγ

γγ
 

 
where 
 

( ) ( ) ( ) ( ) ( ) ( )tyitxttiytxt ′+′=′⇒+= γγ , 

( ) ( ) ( ) ( )∫∫∫ +=+
b

a

b

a

b

a
dttvidttudttivtu . 

 
Examples. (1) ( ) zzf 1= , [ ] itert 0:2,0: aC→πγ . 
 

( )
( )

i

dt

dt

dzf

it

it

er
eir

t
t

z

π

π

π

γ
γ

γγ

2

2

0

2

0

1

0

0

=

=

=

=

∫

∫

∫∫
′

 

 
(2) ( ) 2zzf = , ( ) ( )tit += 11γ , [ ]1,0∈t . 
 

( ) ( )

( )
( )i

dttii

dtitif

+=

++=

++=

∫

∫∫

1

11

11

3
2

1

0

22

1

0

2

1γ

 

 
( ) 2

2 ittt +=γ , [ ]1,0∈t . 
 

( )( )

( ) ( )
6
5

15
8

6
2

4
2

5
1

3
1

1

0

531

0

42

1

0

42

22

21
2

i
i

dtttidttt

dttittf

+=

+++=

+++=

++=

∫∫

∫∫γ
 

 
Definition. If γ  is a “sum of curves” nγγγγ +++= K21  then 
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∑ ∫∫ =
=

n

k k

ff
1 γγ

. 

 
Theorem 2.1. (The Fundamental Theorem of Contour Integrals) Let C→D:f  be 
continuous. Then the following are equivalent: 
(1) f  has an anti-derivative on D , i.e. C→∃ D:F  such that fF =′ ; 
(2) ∫γ f  is dependent only on the endpoints of γ . 

 
Proof. ( ) ( )21 ⇒ : Suppose fF =′ . Choose D∈10, zz  and [ ] D→ba,:γ  a path joining 
them. 
 

( )( ) ( )

( )( ) ( )∫

∫∫
′′=

′=

b

a

b

a

dtttF

dtttff

γγ

γγ
γ  

 
By the Chain Rule, 
 

( )( )
( )( ) ( )( )

( ) ( )01 zfzF
aFbF

dttFf
b

a dt
d

−=
−=

= ∫∫
γγ

γ
γ

 

 
and this depends only on 0z  and 1z , not γ . 
 

( ) ( )12 ⇒ : Choose D∈0z . Define ( ) ( )∫=
z

z
dwwfzF

0

. Choose 0δ  such that ( ) D⊆zB
0δ

. 

Then for 0δδ < , take ( ) tzt δγ += , [ ]1,0∈t : 
 

( ) ( )

( )( ) ( )

( )

( )∫

∫

∫
∫

∫∫∫

+=

+=

′=

=






 −+=

+

+−+

1

0

1

0
1

1

1

1

00

dttzf

dttzf

dtttf

f

fff

z

z

z

z

z

z

z

z

zFzF

δ

δδ

γγ

δ

γδ

δ

δ

δ

δδ
δ

 

 
Now use continuity to obtain 
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( ) ( ) ( )
( )zf

dtzfzFzF

=

= ∫−+

→

1

00
lim δ

δ

δ  

 
 
Corollary 2.2. ( ) zzf 1=  does not have an anti-derivative on { }0\C . 
 
Proposition 2.3. Let C→D:f  be continuous. Then the following are equivalent: 
(1) 0=∫β f  for every closed curve (contour) β ; 

(2) ∫γ f  depends only upon the endpoints of γ , γ  a path. 

 
Proof. ( ) ( )12 ⇒ : Let [ ] D→ca,:β  be a closed curve. We require 0=∫β f . Let 

( )cab ,∈ . ( )bβ  
 

 
 
Let [ ]ba,1 ββ =  and [ ]cb,2 ββ =  be the two resulting paths. 

 

∫∫∫ +=
21 βββ

fff  

 
Let 2β−  be the curve 2β  traversed in the reverse direction: [ ] D→− 1,0:2β , 

( ) ( )( )cbtct −+=− 22 ββ . 
 

( )( )( ) ( )( )( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

∫
∫

∫

∫

∫∫

−=

′−=

′=

′=

−−+′−+=
−

2

2

22

22

1

0 22

1

0 22

β

β

ββ

ββ

ββ

ββ

f

duuuf

duuuf

dtuuf

dtcbcbtccbtcff

c

b

b

c

dt
du
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Hence, 
 

0
21

21

=

−=

+=

∫∫
∫∫∫

−ββ

βββ

ff

fff

 

 
( ) ( )21 ⇒ : Suppose 21,γγ  are two paths in D  starting and finishing at the same points 
respectively. 
 

 
 
Let β  be the path 1γ  then 2γ− . 
 

∫∫∫∫∫ −=+==
− 2121

0
γγγγβ

fffff . 

 
 
Look at ( ) zzf 1= ; this has no anti-derivative on { }0\C . Let ( ) zzF Log= ; F  is defined 
on { }0\ ≤∈ xx �RC . 
 
Exercise. Show ( ) zz 1gLo =′ . 
 
The difference lies in the existence of holes as opposed to simple connectedness. 
 
Ultimately, we will prove Cauchy’s Theorem: 
 
Cauchy’s Theorem. If C→U:f  is holomorphic on a simply connected domain U  then 

0=∫γ f  for every closed curve γ  in U . 

 
Definition. Let [ ] C→ba,:γ  be a closed curve not passing through C∈0 . Then the 
winding number of γ  around 0  is the (integer) number of times that γ  winds around 0  
in the counter-clockwise direction. 
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( ) ∫=
γπγ dzw zi

1
2
10, . 

 
Definition. Let [ ] C→ba,:γ  be a closed curve not passing through C∈0z . Then the 
winding number of γ  around 0z  is 
 

( ) ∫ −=
γπγ dzzw zzi 0

1
2
1

0, . 

 
We could write ( ) ( ) ( )tietrzt θγ += 0 , where ( )tθ  is a continuous choice of argument. Then 
 

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( )
( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )
π

θθ
θθ

θ

π

π

π

θ
π

πγπ

θ

θ

θ

θ

θ

θ

2anglein  change

loglog

2
1

2
1

2
1

2
1

2
11

2
1

0

=

−=

−+−=

′+=

+=

=

∫

∫

∫∫

′

′′

′

−

ab
aibiarbr

dtti

dti

dt

i

b

a tr
tr

i

b

a etr
ettr

etr
etr

i

b

a etr
etr

izzi

ti

ti

ti

ti

ti

ti

 

 
Definition. Let C⊆U  be connected. U  is simply connected if ( ) 0, 0 =zw γ  for all closed 
curves γ  in U  and U∉0z . 
 
Theorem 2.4. Suppose C⊆U  is simply connected and γ  is a triangular path in U . If 

C→U:f  is holomorphic then 0=∫γ f . 

 
Lemma 2.5. Let C→D:f  be continuous and γ  a path in D . If ( )( ) Mtf ≤γ  then 

( )γ
γ

lMf ≤∫ , where ( )γl  is the length of the path γ . 

 
Proof of 2.5. 
 

( )( ) ( )

( )( ) ( )

( )
( )γ
γ

γγ

γγ
γ

lM

dttM

dtttf

dtttff

b

a

b

a

b

a

=

′≤

′≤

′=

∫

∫

∫∫
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Proof of 2.4. By taking midpoints of the edges we have four new paths: 
 

 
 

4321 γγγγγ +++=  

∫∫∫∫∫ +++=
4321 γγγγγ

fffff  

 

We show 0=∫γ f  by showing 0=∫γ f . 

 

∫∫∫∫∫ +++≤
4321 γγγγγ

fffff  

 

Choose k  such that ∫∫ ≥
γγ

ff
k

4
1 . Label 1γγ =k . Note that ( ) ( )γγ ll 2

11 = . Continue the 

subdivision process to find a sequence of triangular paths ( )nγ  such that 
 

( ) ∫∫ ≥
γγ

ff n
n 4

1 , 

( ) ( ) ( )γγ ll
nn

2
1= . 

 
Let nT  be the triangle bounded by nγ . Since ( ) 0→nγl  we have { }01 zT n

n =∞
=I  by 

Baire’s Theorem. Now since f  is holomorphic (at 0z ), given 0>ε , 0>∃δ  such that 

for δ<− 0zz , ( ) ( ) ( ) ε<′−−
−

00

0 zfzz
zfzf , i.e. 

 
( ) ( ) ( )( ) 0000 zzzzzfzfzf −<−′−− ε . 

 
Since the nT  are shrinking to { }0z , N∈∃N  such that ( )0zBTNn n

δ⊆⇒> . Hence, for 
Nn >  and nz γ∈ , 

 
( ) ( ) ( )( ) ( )nzzzfzfzf γεl<−′−− 000 . 

 
Thus, by Lemma 2.5, 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )24
1

000 γεγγε
γ

lll
nnn

n
dzzzzfzfzf =≤−′−−∫ . 

 
Observe that ( ) ( )( ) 0000 =−′−−∫ n

dzzzzfzf
γ

, so 

 

 ( ) ( )24
1 γε

γ
l

n
n

f ≤∫  

⇒  ( ) ( ) ( )24
1

4
1 γε

γ
l

nn f ≤∫  

⇒  ( )2γε
γ

l≤∫ f  

⇒  0=∫γ f  

 
 
Corollary 2.6. Let ( ) C→0: zBf r  be holomorphic. Then f  has an anti-derivative on 

( )0zBr . 
 
Proof. Let zγ  be the radial path in ( )0zBr  from 0z  to z  and define ( ) ∫=

z

fzF
γ

. We 

wish to show that ( ) ( )zfzF =′ . 
 

( ) ( )

( )

( )
( )zf

dttzf

dttzf

f

ff

ff

ff

zz

zz

zFzF

zz

zz

0

1

0

1

0
1

1

1

1

1

→

+←

+←∇

−

−+

→

+=

+=

=






 +=






 +=






 −=

∫

∫

∫
∫∫

∫∫

∫∫

+

+

δ

δ

δδ

δδ

γγδ

γγδδ
δ

δ

δδ

δ

δ

 

 
 
Corollary 2.7. If C→U:f  is holomorphic on a simply connected domain U  then for 
every rectangular path γ  in U , 0=∫γ f . 
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Proof. 
 

 
 

0
21

=+= ∫∫∫ γγγ
fff  

 
 
Theorem 2.8. (Cauchy’s Theorem) If C→U:f  is holomorphic on a simply connected 
domain U  then 0=∫γ f  for every closed curve γ  in U . 

 
Proof. Let [ ] U→ba,:γ  be a closed curve. Cover [ ]( )ba,γ  with discs iD ; choose a finite 
subcover nDD ,,0 K  such that [ ]( ) iii Dtt ⊆+1,γ , where 
 

btttta nn =<<<<= −110 K . 
 
In iD , let iβ  be a step path such that ( ) ( )iii tt γβ = , ( ) ( )11 ++ = iii tt γβ . By Proposition 2.3, 

[ ]
∫∫ =

+ iitit

ff
βγ

1,

. Let β  be the path given by the iβ  in order; nβββ ++= K0 . Then 

 

∑ ∫∫ =
=

n

i i

ff
0 ββ

. 

 
We now show that β  can be written as a sum of rectangular paths. To do this, extend all 
horizontal and vertical segments of β  to lines, thus breaking the plane up into a finite 
number of rectangles jR , some of which may be infinite. In the interior of each jR  
choose a point jz  and let 
 

( )jj zw ,βν = . 
 
Collect all jR  with 0≠jν  and, after re-indexing, say these are kRR ,,1 K . Let jR∂  be the 
rectangular path in the boundary of jR  traversed in the anti-clockwise direction. Define 

the path β~  by 
 

∑ =
∂=

k

j jj R
1

~ νβ . 
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We claim that ββ ~
= . Suppose not – then there is some line segment L  in β~  and not in 

β . Suppose there are q±  copies of L  ( jRL ∂⊆ , say q+  copies if L  is traversed in  the 
direction coinciding with the direction of jR∂ , q−  otherwise). 
 
Now let jRq∂−−= ββα ~ ; the path α  contains no copies of L . Hence, 
 

( ) ( ) ( ) qqzwzwzw jjj −=−−= ,,~, ββα , 

( ) ( ) ( ) 0,,~, =−= ′′′ jjj zwzwzw ββα . 
 
Since α  contains no copies of L , ( ) ( )jj zwzw ′= ,, αα , so 0=q . 
 
Now since U  is simply connected and C→U:f  is holomorphic, 0=∫∂ jR

f  for all j , 

so 0=∫γ f . 

 
 
Theorem 2.9. Let C→D:f  be holomorphic and let γ  be a closed curve in D  that 
does not wind around any points outside of D . Then 0=∫γ f . 

 
Remark. This is a strengthening of Cauchy’s Theorem. 
 
Proof. First replace γ  with a step path β  as in Proposition 1.5 so that ∫∫ =

γβ
ff . 

Second, break up the plane into rectangles iR  and take ii Rz ∈ . Collect the iR  for which 

( ) 0, ≠= ii zw βν  and re-index as kRR ,,1 K . As before, ∑ =
∂=

k

i ii R
1
νβ . D⊆iR  by the 

assumption that γ  (and hence β ) does not wind around any points not in D , so 
0=∫∂ iR

f  by Corollary 2.7. Hence 0== ∫∫ βγ
ff . 

 
 
Corollary 2.10. If C→U:f  is holomorphic and U  simply connected then f  has an 
anti-derivative on U . 
 
Theorem 2.11. (Generalized Cauchy Theorem) Let C→D:f  be holomorphic and let 

nγγγ ++= K1  be a sum of closed contours in D  with 
 

( ) ( ) ( ) 0,,, 1 =++= zwzwzw nγγγ K  
 
for all D∉z . Then 0=∫γ f . 
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Proof. Construct a new closed curve δ  in D  by adding segments iσ± , ni ≤≤1 . Choose 

D∈0w  and let iw  be the starting / finishing point of iγ . Let iσ  be a path in D  from 0w  
to iw . Let ( ) ( )nnn σγσσγσδ −+++−+= K111 , a closed curve. 
 

 
 
For D∉z , 
 

( ) ( )

( )
0

,

,,

1

1

=

=

−+=

∑
∑

=

=

n

i i

n

i iii

zw

zwzw

γ

σγσδ

 

 
By Cauchy’s Theorem, 
 

∫∑ ∫∫ ===
= −+ γσγσδ

fff n

i iii1
0 . 

 
 
Theorem 2.12. (Cauchy’s Integral Formula) Let C→D:f  be holomorphic and Dz ∈0 . 

Choose 0>R  such that ( ) D⊆0zBR  and let γ  be a closed contour in ( )0zBR  with 
( ) 1, 0 =zw γ . Then 

 
( ) ( )∫ −=

γπ dzzf zz
zf

i 02
1

0 . 

 
Proof. ( )

0zz
zf

−  is holomorphic on { }0\ zD . 
 

( ) ( )
( )

( )02
1

2
1

0 00
zfdzdz

zB zz
zf

izz
zf

i
r

== ∫∫ ∂ −− πγπ , 

 
by Theorem 2.11, where Rr <<0 . 
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Definition. A holomorphic function defined on all of C  is called entire. 
 
Theorem 2.13. (Liouville’s Theorem) Let CC→:f  be a bounded entire function. Then 
f  is constant. 

 
Proof. Suppose f  is entire and bounded; let 0>M  be such that C∈∀z , ( ) Mzf ≤ . 
We show that ( ) ( )0fzf ≡  by Cauchy’s Integral Formula: 
 

( ) ( )
( )∫∂ −=
02

1

RB zw
wf

i dwzf π  

( ) ( )
( )∫∂=
02

10
RB w

wf
i dwf π  

 
So, 
 

( ) ( ) ( ) ( )
( )

( )
( )( )∫

∫

∂ −

∂ −

=

−=−

02
1

02
10

R

R

B wzw
wzf

i

B w
wf

zw
wf

i

dw

dwfzf

π

π
 

( ) ( ) ( ) ( )( )

0

00 2
1

∞→

−

−

→

=

∂≤−

R

zR
zM

RzRR
Mz Bfzf lπ

 

 
So ( ) ( )0fzf ≡ . 

 
 
Theorem 2.14. (The Fundamental Theorem of Algebra) Let CC→:p  be a non-
constant polynomial with coefficients in C . Then C∈∃ 0z  such that ( ) 00 =zp . 
 
Proof. Suppose C∈∀z , ( ) 0≠zp . Then ( )zp

1  is entire. ( ) ∞→
∞→z

zp , so 0>∃K  such that 

( ) 11 <⇒> zpKz . Moreover, since p
1  is continuous on ( )0KB , 0>∃M  such that 

( ) Mzp ≤1  for ( )0KBz∈ . So p
1  is bounded on C . Liouville’s Theorem implies that p

1  is a 
constant, so p  is a constant, a contradiction. 

 
 
Theorem 2.15. (Gauss’ Mean Value Theorem) Suppose ( ) C→0: zBf R  is holomorphic. 
Then for Rr <<0 , 
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( ) ( )∫ +=
π

π

2

0 02
1

0 dtrezfzf it . 

 
Proof. This follows from Cauchy’s Integral Formula: 
 

( ) ( )
( )

( )

( )∫

∫

∫

+=

=

=

+

∂ −

π

π

π

π

π

2

0 02
1

2

02
1

2
1

0

0

0
0

dtrezf

dtire

dzzf

it

it
re

rezf
i

zB zz
zf

i

it

it

r

 

 
 
Theorem 2.16. (Maximum Modulus Principle) Let C→D:f  be holomorphic and non-
constant on a connected domain D . Then f  cannot attain a maximum in (the interior 
of) D . 
 
Proof. Suppose not – suppose f  attains a maximum at D∈0z , i.e. ( ) ( )zfzf ≥0  for all 

D∈z . Choose 0>R  such that ( ) D⊆0zBR . By Gauss’ Mean Value Theorem, for all 
Rr <<0 , 

 

 ( ) ( )∫ +=
π

π

2

0 02
1

0 dtrezfzf it  

⇒  ( ) ( ) ( )0

2

0 02
1

0 zfdtrezfzf it ≤+≤ ∫
π

π

⇒  ( ) ( )∫ +=
π

π

2

0 02
1

0 dtrezfzf it  

 
It follows that [ ] ( )Rrt ,0,2,0 ∈∈∀ π , ( ) ( )itrezfzf += 00 . 
 
Hence, if f  is maximized at 0z  ( ) D⊆∃ 0zBr  such that f  is maximized on ( )0zBr . 

Hence ( ) ( ){ }0zfzfz =∈=′ DD  is an open set, but since f  is continuous it is also 
closed. Hence, by connectedness, DD =′ . 

 
 
Theorem 2.17. Let ( ) C→0: zBf R  be holomorphic. Then f  has a power series 
expansion on ( )0zBR : 
 

( ) ( )∑∞

=
−=

0 0n
n

n zzazf  

 
for ( )0zBz R∈ , and furthermore 
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( )
( )( )∫∂ − +=

0
1

0
2
1

zB zz
zf

in
r

n dza π , 

 
where Rr <<0 . 
 
Proof. (Sketch Proof.) We work from the formula ( ) ( )∫ −=

γπ dwzf zw
wf

i2
1 . Expand zw−

1  in a 

power series centred at 0z : 
 

( ) ( )∑∞

= −− −=
0 0

11
0n

nn
zwzw zz  

 
Substitute into the integrand. It then remains to show that we can integrate term-by-term. 

 
 
With this theorem in hand we can describe the local behaviour of a holomorphic map. 
Consider ( ) kzzf = , 2≥k . 
 

 
 

Consider ( )0RBD = ; f  maps D  to ( )0RBD ′=′ . For any { }0\Dw ′∈ , ( )wf 1−  consists of 
k  distinct points in D . Moreover, there is a neighbourhood wU  of w  such that 

( ) i
k
iw UUf 1

1
=

− =C , where the iU  are disjoint neighbourhoods of the k  pre-images of w , 

and wiU
UUf

i
→:  is a homeomorphism. We say that ( ) kzzf =  is a k -fold branched 

covering, branched over D∈0 . 
 
In fact, any holomorphic map is a k -fold branched covering: 
 

( ) ( ) ( )∑∞

=
−=−

1 00 n
n

n zzazfzf  

 
If f  is non-constant N∈∃n  such that 0≠na ; let k  be the smallest such n . 
 

( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )zgzz

zzaazz

zzazzazfzf

k
kk

k

k
k

k
k

0

010

1
0100

−=

+−+−=

+−+−=−

+

+
+

K

K
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Since ( ) 00 ≠zg , 0>∃r  such that ( ) 0≠zg  for all ( )0zBz r∈ . Now by Question 12 on 

Question Sheet 1 there is a holomorphic ( ) C→0: zBh r  such that ( ) ( )zgzh k = , so  
 

( ) ( )
( )

k

zH

zhzzzfzf ))()(( 00 43421
−=−  

 
Observe that ( ) ( ) 000 ≠=′ zhzH . 
 

→H

0z ( )0zf

 
 
By the Inverse Function Theorem, H  is invertible, i.e. is a change of coordinates. So 
( ) ( )0zfzf −  is a k -fold branched convering. 

 
Theorem 2.18. (Open Mapping Theorem) If C→D:f  is a non-constant holomorphic 
map then f  is open, i.e. D∈∀ 0z  there is an open neighbourhood U  of ( )0zf  such that 

( )DfU ⊆ . 
 
Proof. This follows from the above local model of holomorphic maps. 

 
 
Theorem 2.19. The zeroes of a non-constant holomorphic function C→D:f  are 
isolated, i.e. if ( ) 00 =zf  ( ) D⊆∃ 0zBR  such that ( ) 0≠zf  for ( ) { }00 \ zzBz R∈ . 
 
Proof. By the local behaviour of f  we know that ( ) D⊆∃ 0zBR  such that 
 

( ) ( ) ( )( )00:
0

zBfzBf RRzBR
→  

 
is a k -fold branched covering branched over 0z , so 0z  is the only zero of f  in the disc. 

 
 
Theorem 2.20. Let C→D:, gf  be holomorphic. Suppose ( ) ( )nn zgzf =  for a 
convergent sequence of distinct points in D , D∈→ zzn ˆ . Then gf =  on D . 
 
Proof. Let gfh −= . h  has a non-isolated zero at D∈ẑ , and so 0=h  on D . Hence 

gf =  on D  
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Example. 1cossin 22 =+ zz  for R∈z , so 1cossin 22 =+ zz  for C∈z . 
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3. POLES, RESIDUES AND INTEGRALS 
 
Definition. If ( ) { } C→00 \: zzBf r  is holomorphic then f  is said to have an isolated 
singularity at 0z . 
 
Examples. 
 

( ) zzf z sin1=  
( ) zzg 1=  

( ) zezh 1−=  
 
Theorem 3.1. (Laurent’s Theorem) Suppose f  is holomorphic on the open annulus 

( ) { }2010, 21
RzzRzzA RR <−<∈= C , where 012 ≥> RR . Then f  has a Laurent series 

expansion on ( )0, 21
zA RR=A : 

 
( ) ( )∑ ∈

−= Zn
n

n zzazf 0  

 
with 
 

( )
( )( )∫∂ − +=

0
1

0
2
1

zB zw
wf

in
r

n dwa π , 

21 RrR << . 
 
Proof. (Sketch proof.) Use Cauchy’s Integral Formula: 
 

( ) ( )
( )∫∂ −=
zB zw

wf
i dwzf

ε
π2
1  

 

1R
2R

0z 1C 2C

( )zBε∂

 
 

( ) iteRztC 101 ′+= , [ ]π2,0∈t  
( ) iteRztC 202 ′+= , [ ]π2,0∈t  
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Observe that ( )( ) 0,12 =′∂−− zzBCCw ε  for all { }zz \A∉′ . By the Generalized Cauchy 
Theorem,  
 

( ) ( )
( )

( ) ( ) 




 −== ∫∫∫ −−∂ −

12
2
1

2
1

C zw
wf

C zw
wf

izB zw
wf

i dwdwdwzf ππ
ε

 

 
For ( )∫ −

2C zw
wf dw  expand zw−

1  as a power series centered about 0z : 

 

( ) ( )∑∞

= −− −= +0 0
11

1
0n

n
zwzw zzn  

 
since 1

0

0 <−
−

zw
zz . For ( )∫ −

1C zw
wf dw  expand: 

 
( ) ( )∑∞

= −− +−=
0

1
0

1
1

0n zz
n

zw nzw  

 
since 1

0

0 >−
−

zw
zz . Integrate term-by-term to obtain the claimed Laurent series expansion. 

 
 
Examples. (1) ∑∞

=− =
01

1
n

n
z z  for 1<z . Hence, 

 
( )∑∞

=−− −=−=
0

11
11
11

11
1

n
n

zzzzz
z  for 1>z . 

 
(2) 
 

( )
K

K

−+−=

−+−=

!5!3

!5!3
1sin

42

53

1 zz

zz
zz

z z
 

 
(3) kz

1  is its own Laurent series for 1≥k . 
 
(4) For 0>z , 
 

( ) ( ) ( )
( ) ( )∑∞

=
−

−

=

+−+−+−+=

0
1

!
1

312111 !3!21

n
n

zn

zzz
z

n

e K
 

 
Definition. A holomorphic function ( ) { } C→00 \: zzBf R  is said to have a removable 
singularity at 0z  if f  can be extended to a holomorphic function on ( )0zBR . 
 



MA3B8 COMPLEX ANALYSIS 

 - 26 - 

Proposition 3.2. Let ( ) { } C→00 \: zzBf R  be holomorphic. Then the singularity at 0z  is 
removable if and only if f  is bounded on ( ) { }00 \ zzBr  for some Rr ≤<0 . 
 
Proof. (⇒ ) Trivial. 
 
(⇐ ) Assume f  is bounded by M  on ( ) { }00 \ zzBr . We will show that in the Laurent 

expansion ( ) ( )∑ ∈
−= Zn

n
n zzazf 0 , 0=na  for 0<n . 

 
( )

( )( )

( )( )
( )∫

∫

∂

−−

∂ −

−=

= +

0

0
1

0

1
02

1

2
1

zB

n
i

zB zz
zf

in

r

r
n

dzzzzf

dza

π

π
 

 
Hence, by the Estimation Lemma, 
 

n

n
n

Mr

rMra
−

−−

=

≤ ππ 21
2
1

 

 
0

0→

− →
r

nMr  so 0=na  for all negative n . So the Laurent series is, in fact, a power series, 

 
( ) ( )∑∞

=
−=

0 0n
n

n zzazf  

 
for ( ) { }00 \ zzBz R∈ . By defining ( ) 00 azf =  we have a holomorphic extension of f  to 

( )0zBR . 
 

 
Proposition 3.3. Let ( ) { } C→00 \: zzBf R  be holomorphic. Suppose ( ) ∞=

→
zf

zz 0

lim . Then 

N∈∃N  such that 0=⇒> −naNn . 
 
We say that f  has a pole of order N  at 0z . 
 
Proof. ( ) ( )zfzg 1=  is holomorphic on ( ) { }00 \ zzBR′  for some RR ≤′<0 . Observe that 

( ) 0lim
0

=
→

zg
zz

, hence g  is bounded on ( ) { }00 \ zzBR ′′ , RR ′≤′′<0 . So 

 
( ) ( ) ( ) ( )( )K+−+−+−= ++

2
02010 zzbzzbbzzzg NNN

N , 0≠Nb  
 
Take ( ) ( ) ( ) K+−+−+= ++

2
0201 zzbzzbbzh NNN , so 

 
( ) ( ) ( )zhzzzg N

0−= . 
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Moreover, ( ) 0≠zh  for ( )0zBz R ′′∈ , so 
 

( ) ( ) ( )

( ) ( )∑∞

=−

−

−=

=

0 0
1

11

0

0

n
n

nzz

zhzz

zza

zf

N

N

 

 
Note that 00 ≠a . 

 
 
Corollary 3.4. g  has a pole of order N  at 0z  if and only if g

1  has a zero of order N  at 

0z . 
 
Definition. If f  has an isolated singularity at 0z  that is neither removable nor a pole 
then f  is said to have an essential singularity at 0z . 
 
Corollary 3.5. f  has an essential singularity at 0z  if and only if in the Laurent 
expansion of f  about 0z  there are infinitely many N∈n  such that 0≠−na . 
 
Proposition 3.6. Suppose ( ) { } C→00 \: zzBf R  has an essential singularity at 0z . Then in 
any neighbourhood of 0z , f  takes values arbitrarily close to any C∈α . 
 
Theorem 3.7. (Picard’s Theorem) Let f  have an essential singularity at C∈0z . Then 
on any small neighbourhood of 0z , f  takes every value in C , with possibly one 
exception. 
 
Although essential singularities are wildly behaved, in some sense poles are no worse 
than zeroes. 
 
Idea. A holomorphic function ( ) { } C→00 \: zzBf R  whose singularity at 0z  is not 
essential can be extended to a holomorphic function ( ) { }∞∪→C0: zBf R . 
 
We call { }∞∪= CĈ  the Riemann sphere. Topologically, Ĉ  is the usual two-
dimensional sphere, the one-point compactification of 2R . Complex analytically we can 
represent it as the unit sphere in 3R , ( ){ }1,, 22232 =++∈= wvuwvuS R , whose points 
are identified with Ĉ  via stereographic projection Ĉ: 2 →Sπ . 
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For ( ) ( ){ }1,0,0\,, 2Swvu ∈ , ( ) =wvu ,,π the point of intersection of the line through 
( )1,0,0  and ( )wvu ,,  with the ( )vu, -plane. Define ( ) ∞=1,0,0π . 
 
The line through ( )1,0,0  and ( )wvu ,,  is parameterized by ( ) ( )( )wvutt ,,11,0,0 −+ . The 
value of t  corresponding to ( )wvu ,,π  is where ( ) 01 =−+ wtt , so 1−= w

wt . Hence, 
 

( ) ( ) ( )
( )

w
v

w
u

w
v

w
u

ww
w

i

wvuwvu

−−

−−

−−

+=

=

+=

11

11

1
1

1

0,,
,,1,0,0,,π

 

 
Consider CC ˆˆ: →f , ( ) zzf 1= . This can be considered as a map 22:ˆ SSf → , where 

ππ oo ff 1ˆ −= . z  is a coordinate on ( ){ }1,0,0\2S  and z
1  is a coordinate on 

( ){ }1,0,0\2 −S . Hence, 2S  (or Ĉ ) can be considered as two copies of C  with variables 
z  and w  respectively, under the identification ~

CCC , where wzwzwz 1 ,0,~ =≠⇔ . 
 
Suppose f  has a pole at 0z : 
 

( ) CC ˆˆ 1

0 →→ zzf
R zB a  

( )zfz 1a , holomorphic near 0z  
 
We can consider the behaviour of a holomorphic function near ∞ : 
 

{ } CC →>∈ Rzzf :  

( ) ( )wfwg 1=  on { }Rww 10 <<∈C  
 
We will say that f  has a zero / removable singularity / pole / essential singularity at ∞  if 
g  has a zero / removable singularity / pole / essential singularity at 0 . 
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Examples. (1) ( ) zzf −= 1
1 ; ( ) ( ) 111

11
−− === w
w

wwfwg . f  has a zero of order 1 at ∞ . 

(2) ( ) 1+= kzzf ; ( ) ( ) 111 +== kwwfwg ; N∈k . f  has a pole of order k  at ∞ . 

(3) ( ) zezf = ; ( ) wewg 1= . f  has an essential singularity at ∞ . 
 
Definition. Let Ĉ⊆D  be a domain. A function Ĉ: →Df  that is holomorphic except at 
a finite number of poles is called meromorphic. 
 
Theorem 3.8. A meromorphic function CC ˆˆ: →f  is a rational function, i.e. a quotient 
of two polynomials, ( ) ( )

( )zq
zpzf = , [ ]zqp C∈, . 

 
Proof. Let { }k

iiz 1=  be the set of poles of f  in C ; say the order of the pole at iz  in in . 
 

( ) ( ) ( )zgzzzf k

i
n

i
i =−∏ =1

 

 
g  is entire; we require that g  be a polynomial. 
 
Now, at ∞ , since f  has at worst a pole at ∞ , say of order m : 
 

( ) ( ) ( )w
k

i

n
iww gzf i 1

1
11 =−∏ =

 near 0=w  

 
( )wg 1  has at worst a pole of order mnn k +++K1  at 0=w . 

 
( ) ∑∞

=
=

0n
n

nzazg , C∈z  

( ) ( )∑∞

=
=

0
1

n
n

wnawg  

 
0=na  for mnnn k +++> K1 , so g  is a polynomial. 

 
( ) ( )

( )∏
=

=
−

k

i
in

izz

zgzf
1

 

 
 
In the next section we consider functions CC ˆˆ: →f  of the form 
 

( ) δγ
βα

+
+= z

zzf , 
 
the linear fractional transformations. 
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Definition. If ( ) { } C→00 \: zzBf R  has an isolated singularity at 0z  we define the residue 
of f  at 0z  to be 
 

( ) ( )
( ) 12

1
0,Res −∂

== ∫ adzzfzf
or zBiπ , Rr <<0 . 

 
Theorem 3.9. (Cauchy’s Residue Theorem) Let C→D:f  be holomorphic except 
possibly at isolated singularities. Let γ  be a simple (i.e. non-self-intersecting) closed 
curve in D  such that all points inside γ  are contained in D  and ( ) 1, =zw γ  for all z  
inside γ . Then 
 

( )∑∫ =
=

k

j jzfif
1

,Res2π
γ

, 

 
where kzz ,,1 K  are the singularities of f  inside γ . 
 
In order to make sense of the term “inside γ ” we need the Jordan Curve Theorem, which 
we shall not prove: 
 
Theorem 3.10. (Jordan Curve Theorem) If γ  is a simple closed curve in C  then γ\C  
consists of two disjoint domains: a bounded domain (the “inside of γ ”) and an 
unbounded domain (the “outside of γ ”), and the curve γ  is the boundary of each of 
these two domains. 
 
Proof of 3.9. Let Γ  denote the inside of γ . Choose small circular paths kγγ ,,1 K  centred 
on kzz ,,1 K  respectively such that Γ⊆iγ  and ( ) ijji zw δγ =, . We claim 
 

∫∫∫ ++=
k

fff
γγγ

K
1

. 

 
This follows from the Generalized Cauchy Theorem, which guarantees that 
 

0
1

=+++ ∫∫∫ −− k

fff
γγγ

K . 

 
for if =′D neighbourhood of ∪γ neighbourhood of { }kzz ,,\ 1 KΓ  and D′∉z , 
 

( ) ( ) ( ) ( )( ) 0,,,, 11 =++−=−−− zwzwzwzw kk γγγγγγ KK . 
 
Hence, 
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( )∑

∑ ∫∫

=

=

=

=

k

j j

k

j

zfi

ff
j

1

1

,Res2π

γγ  

 
 
Examples. Let ( ) { } C→00 \: zzBf R . 
(1) A simple pole (a pole of order 1): 
 

( ) ( ) ( ) K+−+−++= −
− 2

020100

1 zzazzaazf zz
a  

 
Write ( ) ( )

( )zh
zgzf = ; at a singularity / pole, ( ) 0≠zg , ( ) 0=zh . Look at ( )0' zh ; if ( ) 00 ≠′ zh  

then f  has a simple pole at 0z . 
 

( ) ( ) 10
0

lim −→
=− azfzz

zz
 

 
If h

gf =  then 
 

( ) ( ) ( ) ( )
( )

( )
( )0

00

00

limlim 0 zh
zg

zh
zgzz

zzzz
zfzz ′

−

→→
==−  

 
by l’Hôpital’s Rule. 
 
(2) A pole of order k : 
 

( ) ( ) ( ) ( ) KK +−+−++++= −−
−− 2

020100

1

0
zzazzaazf zz

a
zz

a
k

k  

 
Multiply through by ( )kzz 0− : 
 

( ) ( ) ( )( ) ( ) ( ) KK +−+−++−+=− −
−−−−

kk
kk

k zzazzazzaazfzz 00
1

01010  
 
Differentiate 1−k  times (using Leibniz’s Rule) and evaluate at 0zz = : 
 
 ( ) ( ) ( ) 10 !11

1

−−=−−

− akzfzz k
dz
d

k

k  

⇒  ( ) ( ) ( )
0

1

1

0!1
1

1 zz

k
dz
d

k zfzza k

k

=−− −= −

−

 
So, for example, 
 



MA3B8 COMPLEX ANALYSIS 

 - 32 - 

( )
( )( ) ( )

( )
4

12

11,Res

1

1

2
1
1

2

2

=

+=

+=

=

=−
+

z

zdz
d

z
z

z

z

 

 
(3) If ( ) ( ) ( ) ( ) K−+−== 51

!5
131

!3
111sin zzzzzf  then we see that ( ) 10,sinRes 1 =z . 

 
We can evaluate real integrals by means of residues. 
 

Examples. (1) 
21 4

2 π=∫
∞+

∞− +
dx

x
x . 

 
Consider ( ) 4

2

1 z
zzf
+

= . Let Rγ  be the straight path [ ]RR,−  and the upper half of ( )0RB∂ . 

By the Residue Theorem, if 4
1

iep π= , 43
2

iep π=  
 

( ) ( ) ( )( )21 ,Res,Res2 pfpfidzzf
R

+=∫ π
γ

 

 
Write ( ) ( )

( )zq
zpzf = : ( ) ( )

( ) jj

j

j

j

pp

p
pq
pp

jpf 4
1

4 3

2

,Res === ′ . So 

 
( ) ( )

2

434
4

2

π

πππ
γ

=

+= −−∫ iii eedzzf
R  

 
We now wish to show that the integral over the semicircular portion RC  of the path goes 
to zero as ∞→R : 
 

( )

( )∫

∫∫
=

=

π

π

0

0

dtReRf

dteiReRff

it

itit

CR  

 

Since 
111 4

2

4

2

4

2

−−+
=≤

R
R

z

z
z

z  on RC , 

 

( ) 0
10

4

3

∞→−
→≤∫ RR

Rit dtReRf π
π

 

 
So 
 

∫∫
∞+

∞− +∞→
== dxf

x
x

R R
4

2

12
lim

γ
π . 
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(2) 20
sin π=∫

∞
dxx

x . 

 
Consider the curve R,δγ : the straight path [ ]δ−− ,R , the upper half of ( )0δB∂ , the straight 
path [ ]R,δ , the upper half of ( )0RB∂ . 
 
By Cauchy’s Residue Theorem 0

,

=∫
R

iz dzz
e

δγ
. First, 

 
( )

∫

∫

∫

∫∫∫∫

∞

∞→
→

−

−

−

−

→

=

=

+−=+

−

−

0
sin

0

sin2

dx

dxi

dx

dxdudxdx

x
x

R

R

x
x

R

x
ee

R

x
e

R u
e

R

x
e

R x
e

ixix

ixiuixix

δ

δ

δ

δ

δ

δ

δ

 

 
Secondly, 0

∞→
→∫ RC z

e

R

iz dz : 

 

∫

∫

∫

∫

∫∫

−

−

−

=

=

=

=

≤

2

0

sin

0

sin

0

sincos

0

0

2
π

π

π

π

π

dte

dte

dte

dtie

dteiRdz

tR

tR

tRtiR

eiR

it
eR

e
C z

e

it

it

iteiR

R

iz

 

 
Observe that tt π

2sin ≥ , so tRtR π
2sin −≤− : 

 

( )
( )
0
1

2

2

2

0

2
2

2

0

2

∞→

−

−

−

→

−=

−=

≤ ∫∫

R

R
R

Rt
R

Rt

C z
e

e

e

dtedz
R

iz

π

πππ

π π

 

 
Thirdly,  
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π

δ

π

δ

π δ

π

δ

δ

δ

i

dti

dtei

dteidz

it

it

iteiiz

ei

it
e

e
C z

e

−=

−→

−=

−=

∫

∫

∫∫

→ 00

0

0

1

 

 
So 
 

π
δγ

δ

idxidz x
x

z
e

R R

iz −== ∫∫
∞

∞→
∞→ 0

sin2lim0
,

 

 

So 20
sin π=∫

∞
dxx

x , as claimed. 

 

(3) ∫ +

π

θ θ
2

0 cos
1 da  for 1>a . 

 
If θiez = , θθθ dizdiedz i ==  and ( )zz 1

2
1cos +=θ . 

 

( ) ∫∫ ++++
=− 1 21 1

2
1 12

1211
S azziS izzza

dzdz  

 
The zeroes of 122 ++ azz  are 12 +±−= aaz . 12 ++−= aaα  is inside 1S  and 

12 −−−= aaβ  is outside 1S . 
 

( ) ( )( )( )

12
1

1

1
12

1

2

2 ,Res,Res

−

−

−−++

=

=

=

a

zzazz

βα

βα αα

 

 

So ( )
1

2
12

12
2

0 cos
1

22 ,Res2
−+++ ==∫ aazzia id π

π

θ απθ . 

 

(4) 0
0 1

log
2 =∫

∞

+
dx

x
x . 

 
Take a branch of log  such that the polar angle of z  is in the interval ( )2

3
2 , ππθ −∈ . For 

θirez = , 
 

rz loglogRe =  
θ=zlogIm  
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This is possible for { }0\ ≤∈ yiyz C . Take ( ) 21

log
z
zzf

+
=  and consider ( )∫

δγ ,R

dzzf . 

 
( ) ∫∫

−

− +

+

−→−

=
δ π

δ
R x

ix

R

dxdzzf 21
log  

( ) ∫∫ +
→

=
R

x
x

R

dxdzzf
δ

δ
21

log  

 
Hence, 
 

( )

( )20 1
log

0 1
1

0 1
log

0

1
1

1
log

2

22

22

2

2

2

π

δ

δδ

δ
δ

π

π

π

idx

dxidx

dxidxdzzf

x
x

xx
x

R

R

x

R

x
x

R
R

+=

+→

+=

∫

∫∫

∫∫∫

∞

+

∞

+

∞

+
∞→

→

++

→
−→−

 

 
We can show that ( ) 0

0→
→∫ δδC

dzzf  and ( ) 0
∞→

→∫ RCR

dzzf . Therefore, by Cauchy’s Residue 

Theorem, 
 

( ) ( )
( )

20 1
log

0

2

log

1
log

2

2

2

2

,

2

2

lim2

,Res2

i
x
x

R

i

ii
i

z
ziz

iz

dx

i

i

ifidzzf
R

π
δ

π

γ

π

π

π
δ

+→

=

=

=

=

∫

∫

∞

+
∞→

→

+

+
−

→

 

 

So 0
0 1

log
2 =∫

∞

+
dx

x
x , as required. 

 
We can also use the Residue Theorem to find sums of series. 
 
Example. 61

1 2

2
π=∑∞

=n n
. 

 
Find a function with zeroes at integer points, e.g. zπsin ; zπsin

1  has a simple pole at each 
Z∈n . 
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( ) ( )
πππππ

n

nz
nz

nzz n 1
cos

1
sinsin

1 lim,Res −−

→
===  

 
Consider z

z
π
π

sin
cos ; this has residue π1  at nz = . Take a holomorphic function f . 

 
( )( ) ( )

ππ
π zf
z
z nzf =,Res sin

cos  
 

  
 

( )
( )

( ) ( )
( ) ( )

xee
xee

eexieex
eexieex

ee
ee

iyx
iyx

z
z

yy

yy

yyyy

yyyy

yxiyxi

yxiyxi

π
π

ππ
ππ

π
π

π
π

ππ

ππ

ππππ

ππππ

ππππ

ππππ

2cos2
2cos2

sincos
sincos

sin
cos

sin
cos

22

22

−+
++

++−−
−−+

−
+

+
+

−

−

−−

−−

+−−

+−−

=

=

=

=

 

 
On vertical sides Myy

yy

ee
ee

z
z ≤≤

−+
++

−

−

2
2

sin
cos

22

22

ππ

ππ

π
π  for 00 >≥ yy . If ( ) 2z

Mzf ′≤  for some M ′  then 

 

( ) ( ) ( ) 0122cot 021 2
0

2
0, ∞→++

′ →++≤∫ NyN
M yNMdzzzf

yNγ
π  with 2

1
0 += Ny . 

 
For ( ) 2−= zzf , since  
 

( )




=−
≠

=−

0
0

,cotRes
3

1
2 2

n
n

nzz n
π

ππ  

 
we have that 61

1 2

2
π=∑∞

=n n
, as claimed. 
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4. CONFORMAL MAPS 
 
Recall. 22: RR →F  is an isometry if 2, R∈∀ yx , ( ) ( ) yxyFxF −=− . The isometries 

of 2R  are the rigid motions: rotations about points, reflections about lines, translations 
along lines, and composites of these. 
 
We can relax the isometry condition and require only that maps preserve angles – what 
does this mean? 
 
Let 22: RR →F  be differentiable. 
 

→F

1γ

2γ

0z ( )0zF

( )1γF

( )2γF

θ φ

 
 
Let ( ) 2

21 ,:, R→− εεγγ  be two small paths about 2
0 R∈z , so ( ) ( ) 021 00 z== γγ . The 

directed angle θ  between 1γ  and 2γ  is given by ( ) ( ) ( )00cos 21 γγθ ′⋅′= . Similarly, 
 

( ) ( ) ( )
( )( ) ( )( )00

0)(0)(cos

21

21

γγ
γγφ

′⋅′=

′⋅′=
oo

oo

dFdF
FF

 

 
F  preserves angles at 0z  if given paths 21,γγ  through 0z  the angle from 1γoF  to 2γoF  
equals the angle from 1γ  to 2γ . In the diagrams above this corresponds to having φθ = . 
 
Definition. 22: RR ⊆→⊆ VUF  is conformal if it preserves angles at all points of U . 
 
Obviously, any isometry of 2R  is also a conformal map (if one agrees to ignore the 
orientation-reversing properties of reflections). 
 
Theorem 4.1. Let 22: RR ⊆→⊆ VUF , ( )vuF ,= , be differentiable with continuous 
derivatives. Then F  is conformal if and only if ivuf +=  is holomorphic with ( ) 0≠′ zf  
for all points U∈z . 
 
Proof. (⇐ ) Suppose f  is holomorphic at U∈0z  and that ( ) 00 ≠′ zf . If ( ) U→− εεγ ,:  
is a path through 0z  the tangent vector to γof  at 0=t  is 
 

( )( ) ( )( ) ( ) ( ) ( )000 00
γγγγ ′′=′′=

=
zfftf

tdt
d  
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which is simply ( )0γ ′  expanded by ( )0zf ′  and rotated by ( )0arg zf ′ . 
 
(⇒ ) Suppose F  is conformal; 
 









=

yx

yx

vv
uu

dF  

 
Consider 
 

( ) ( )

( ) ( ) 20 sincos

sincos

sin
cos

π

θ

θθ

θθ

θ
θ

vv

v

+=









+








=









=

y

y

x

x

v
u

v
u

dF

 

 
Since F  is conformal, the angle from 0v  to θv  is θ . 
 
⇒  ( ) ( )

θθθ

θ θθ θ
v
v

vv
v

vv
vv 0

0

2
0

0

0 coscos cos === ⋅

⇒  0vv =θ  2
3

2 , ππθ ≠∀  
 
Also, the angle from θv  to 2πv  is θπ −2 . 
 

⇒  ( ) ( )
θ

π

θπ

π

θπ

θπ θθ θ
v

v

vv

v

vv

vv 2

2

2
2

2

2 cossin sin
=== ⋅

⇒  2πθ vv =  πθ ,0≠∀  
 
Hence 0vv =θ  for all θ . 
 

The angle from 







xv
xu  to 








y

y

v

u
 is 2

π , and by the above the two vectors have the same 

length. 
 

( ) xxxxyy iuvivuiivu +−=+=+  
 
By the Cauchy-Riemann Equations ivu +  is holomorphic and ( ) 0222

0 ≠+=′ yx uuzf . 
 

 
Definition. A map CC ˆˆ: →f  is a linear fractional transformation if it is of the form 
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( ) δγ

βα
+
+= z

zzf , 0≠− βγαδ . 
 
Since 
 

( ) ( ) ( )
( ) ( ) 022 ≠==′

+
−

+
+−+

δγ
βγαδ

δγ
βαγδγα

zz
zzzf , 

 
linear fractional transformations are conformal. 
 
Examples. ( ) β+= zzf ; ( ) zzg α= ; ( ) zzh 1= . 
 
Proposition 4.2. The linear fractional transformations of Ĉ  form a group G  under 
composition of maps. 
 
Proof. Routine, with 
 

( ) ( ) αγ
βδ

δγ
βα

+−
−−

+
+ =⇒= z

z
z
z zfzf 1 . 

 
 
Proposition 4.3. The group G  is triply transitive. I.e., if ( )321 ,, zzz  and ( )321 ,, www  are 

triples of distinct points in Ĉ  then there is an Gf ∈  such that ( ) ii wzf =  for 3,2,1=i . 
 
Proof. We first show Gf ∈∃  such that ( ) ( )∞,1,0,, 321 azzz : 
 

( )
12

32

3

1
zz
zz

zz
zzzf −

−
−
−= . 

 
Then ( )

12

32

3

1
ww
ww

wz
wzzg −

−
−
−=  takes ( )321 ,, www  to ( )∞,1,0 . Hence, fgh o1−=  takes ( )321 ,, zzz  to 

( )321 ,, www . 
 

 
Proposition 4.4. A linear fractional transformation is determined by its values at three 
distinct points. 
 
Proof. For 3,2,1=i  let Ĉ∈iz , ( ) ii wzf = . Let h  be as in the proof of Proposition 4.3 
above such that ( ) ii wzh = . Consider ( ) ii zzfh ao :1− . Let fhk o1−= , ( ) δγ

βα
+
+= z

zzk , 
which fixes three distinct points. 
 

zz
z =+
+
δγ
βα  is a quadratic equation in z , which cannot have three distinct roots unless 

0== βγ , δα = , in which case Ĉid=k  and fh = . 
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Theorem 4.5. A linear fractional transformation maps circles / lines to circles / lines. 
(On the Riemann sphere Ĉ , lines and circles are the same.) 
 
Proof. Let f  be a linear fractional transformation and let C  be a circle. We wish to 
show that ( )Cf  is also a circle. Note that a circle C  is determined by any three points 
through which it passes. Choose Czzz ∈321 ,,  distinct. From the proof of Proposition 4.3 
there is a unique linear fractional transformation g  such that ( ) ( )∞,1,0,,: 321 azzzg . In 
fact, g  takes C  to R . 
 
Claim. If h  is a linear fractional transformation then ( )R1−h  is a circle. 
 
Proof. Write ( ) δγ

βα
+
+= z

zzh  and find a z  such that ( ) R∈zh . If ( ) R∈zh  then δγ
βα

δγ
βα

+
+

+
+ = z

z
z
z . 

Hence ( )( ) ( )( )δγβαδγβα ++=++ zzzz  and so 
 

( ) ( ) ( ) 02 =−+−−−+− δβδβγβδαγβδαγαγα zzz . 
 
Case 1: if 0=− γαγα  then we obtain a line since 0≠− βγαδ . 
 
Case 2: if 0≠− γαγα  then the equation becomes 02 =+++ CzBBzzA , γαγα −=A , 

γβδα −=B , δβδβ −=C . Since 0≠− βγαδ , this is the equation of a circle, and the 
claim is proved. 
 
By the claim, ( ) R=Cg . Hence fgk o1−=  takes R  to ( )Cf , which is a circle by the 
claim. 

 
 
Although the one-to-one conformal maps from Ĉ  to itself are quite rigid (they are 
precisely the linear fractional transformations), on subdomains C⊂D  they are quite 
flexible. Ultimately we shall prove the Riemann Mapping Theorem: 
 
Riemann Mapping Theorem. If C⊂U  is a simply connected domain there exists a 
one-to-one conformal map Df →U:  onto the open unit disc. Moreover, if we fix 

U∈0z  we can find such an Df →U:  such that ( ) 00 =zf  and ( )0zf ′  is real and 
strictly positive, and this uniquely determines f . 
 
In most cases we cannot extend f  to UUU ∂∪= . 
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Example.  
 

 
 
Definition. Two domains C⊂′DD,  are called conformally equivalent if there exists a 
conformal bijection DD ′→ . 
 
So the Riemann Mapping Theorem tells us that any simply connected domain is 
conformally equivalent to the unit disc D . 
 
Question. What are the conformal bijections DD → ? 
 
Theorem 4.6. (Schwarz Lemma) Suppose DDf →:  is holomorphic and that ( ) 00 =f . 
Then 
 
 ( ) zzf ≤  ( )∗
and ( ) 10 ≤′f  ( )∗∗
 
If equality is achieved for some Dz ∈0  then ( ) zezf i 0θ=  for some fixed [ ]πθ 2,00 ∈ . 
 
Proof. Consider the function ( )

z
zfzg a: . This has a removable singularity at 0=z . We 

show that ( ) 1≤zg . 
 
Choose Dz ∈0  and 10 << rz . Now consider ( )0zg : 
 

( ) ( )
( )

( )zgzgzg
rBzrz 00 maxmax

∂∈≤
=≤  

 
by the Maximum Modulus Principle. Since ( ) ( )

z
zfzg =  on ( )0rB∂  we have 

( ) ( )
rr

zfzg 1≤= , which is true for all 10 << rz ; so ( ) rr
zg 1

1
lim1
→

=≤ . Hence ( ) zzf ≤  

Dz∈∀ . 
 
Now since ( ) ( ) 100 ≤=′ gf  we have ( )∗∗ . 
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If ( ) 00 zzf =  for some Dz ∈0  then ( ) 10 =zg . Since by the Maximum Modulus 

Principle g  cannot attain maximum modulus on D  unless g  is constant, we have 

( ) ( ) 010
θiezgzg =⇒=  for some real 0θ . 

 
Similarly, if ( ) 10 =′ zf , ( ) 10 =g , so ( ) 0θiezg = , so ( ) zezf i 0θ= . 

 
 
Theorem 4.7. Let DDf →:  be a conformal bijection. Then f  is a linear fractional 
transformation of the form 
 

( ) zz
zziezf
0

00
1−
−= θ  

 
for some Dz ∈0 , [ ]πθ 2,00 ∈ . 
 
Proof. First check that a linear fractional transformation of the form ( ) zz

zziezf
0

00
1−
−= θ  sends 

D  to itself. 
 
Consider DDfg →= − :1 , which is also one-to-one conformal; ( )( ) zzfg =o , so 

( )( ) ( ) 1=′′ zfzfg . Let Dz ∈0  be such that ( ) 00 =zf , so ( ) ( ) 10 0 =′′ zfg . Estimate ( )0g′ : 
we know ( ) 00 zg = , so put 
 

( ) zz
zzzg
0

0
1

~
−
−= . 

 
Then DDgg →:~ o  is such that ( )( ) ( ) 0~0~

0 == zggg o . So ( ) ( ) 1~
00 ≤′′ zgzg . 

 

 ( ) ( )20

2
0

1

1~
zz

zzg
−

−=′  

⇒  ( ) 2
01

1
0

~
z

zg
−

=′  

⇒  ( ) 2
010 zg −≤′  

 
Similarly, put f~  to be the inverse of zz

zzz
0

0
1−
−a , 

 
( ) zz

zzzf
0

0
1

~
+
+= . 

 
So ( )( ) 00~

=ff o . Again by Schwarz’s Lemma, ( ) ( ) 10~
0 ≤′′ fzf . Since ( ) 2

010~ zf −=′ , 

( ) 2
01

1
0 z

zf
−

≤′ . 
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Since ( ) ( ) 100 =′′ gzf , ( ) ( )01

1
2

0
0 zfg

z
′==′

−
, 

 
⇒  ( ) 10)~( =′ff o  

⇒  0
~ θieff ≡o  

⇒  ( ) zz
zziezf
0

00
1−
−= θ  

 
 
The uniqueness part of the Riemann Mapping Theorem follows easily from Theorem 4.7. 
In the proof it is stated that if DDf →:  is a conformal bijection with ( ) 00 =zf  then 

( ) zz
zziezf
0

00
1−
−= θ  for some [ ]πθ 2,00 ∈ . If Dg →U:  is another conformal bijection such 

that ( ) 00 =zg  and ( ) 00 >′ zg  then DDfg →− :1o  is a conformal bijection fixing 0 . So 
( )( ) zezfg i 01 θ=−o  for some 0θ , so ( ) ( )zfezg i 0θ= . Furthermore, since ( ) ( )00

0 zfezg i ′=′ θ , 
10 =θie , so gf = . 

 
The existence part of the Riemann Mapping Theorem will be shown by considering the 
collection of functions 
 

( ) ( ){ }0 ,0 1,-1 c,holomorphi : 00 >′=→= zfzffDf UF . 
 
We need to show that F∈∃f  such that ( ) Df =U . To do this we need to study certain 
facts about spaces of continuous functions. 
 
Let ( )C,DC  be the collection of all continuous functions from an open domain C⊆D  to 
C . (We can replace C  by any complete metric space.) What does it mean for a sequence 
of functions nf  to converge to some other function f  in ( )C,DC ? What does it mean to 
say that ( )C,, DCgf ∈  are close together? 
 
We say that ffn →  pointwise as ∞→n  if for each D∈z , 
 

( ) ( )zfzf
nn ∞→
→ . 

 
However, this is not good enough as continuity is not necessarily preserved by taking a 
pointwise limit. 
 
We say that ffn →  uniformly on compact subsets as ∞→n  if 0>∀ε  and compact 

D⊆K  N∈∃N  such that ( ) ( ) ε<−⇒∈> zfzfKzNn n, . 
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If ffn →  uniformly on compact subsets and the nf  are each continuous then f  is 
continuous. 
 
Two functions ( )C,, DCgf ∈  are close if they differ by a small amount on each compact 

D⊆K . 
 
Definition. Given a compact D⊆K , 0>ε , ( )C,DCf ∈  let 
 

( ) ( ) ( ) ( )






 <−∈=

∈
εε zgzfCgfB

Kz
K sup,, CD . 

 
The sets ( )ε,fBK  form a basis for a topology on ( )C,DC , called the topology of 
compact convergence, equivalent to the compact-open topology on ( )C,DC . 
 
Proposition 4.8. { } ( )C,DCfn ⊆  converge to ( )C,DCf ∈  in the topology of compact 
convergence if and only if ffn →  uniformly on compact subsets. 
 
Theorem 4.9. Suppose C→D:nf  are holomorphic functions converging uniformly to 
some f  on compact subsets. Then f  is holomorphic. Moreover, ffn ′→′  uniformly on 
compact subsets. 
 
Proof. We show that f  is holomorphic by Morera’s Theorem. Let ( ) D⊆0zBR  and let γ  

be a closed curve in ( )0zBR . Since ( )0zBR  is compact and γ  is compact, and ffn →  

uniformly on compact subsets, ∫∫ →
γγ

ffn . By Cauchy’s Theorem, 0≡∫γ nf , so 

0=∫γ f . By Morera’s Theorem, f  is holomorphic on ( )0zBR , so f  is holomorphic on 

D . 
 
Choose D∈0z  and 0>R  such that ( ) D⊆0zBR . Let ( )0zBz R∈ . 
 

( ) ( )
( )( )

( )
( )( )

( )zf

dw

dwzf

zB zw
wf

i

zB zw
wf

in

R

R

n

′=

→

=′

∫
∫

∂ −

∂ −

0
2

0
2

2
1

2
1

π

π

 

 
This implies that ffn ′→′  uniformly on compact subsets. 
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Theorem 4.10. (Hurwitz’s Theorem) Suppose C→D:nf  are holomorphic functions 
converging uniformly to some f  on compact subsets. If each nf  has no zeroes in D  then 
either f  has no zeroes in D  or f  is identically zero on D . 
 
Proof. Suppose f  is not identically zero. Suppose D∈∃ 0z  such that ( ) 00 =zf . Since 

the zeroes of a holomorphic function are isolated we can choose ( ) D⊆0zBR  such that f  
has no other zeroes in ( )0zBR . From Question Sheet 2 the number of zeroes of f  in 

( )0zBR  (counted with multiplicity) is 
( )∫∂

′

0
2
1

zB f
f

i
R

π . Since ffn →  uniformly on compact 

subsets, 
 

( ) ( )∫∫ ∂

′

∂

′ →
00

2
1

2
1

zB f
f

izB f
f

i
RR n

n
ππ . 

 
But 

( )
0

0
2
1 =∫∂

′

zB f
f

i
R n

n
π  for each N∈n  since nf  has no zeroes anywhere in D . So either f  

has no zeroes in D , or it is everywhere zero. 
 

 
Definition. A family ( )C,DF C⊆  is said to be a normal family if every sequence ( )nf  
in F  contains a subsequence ( )

knf  that converges to some f  uniformly on compact 
subsets. (It is not necessary that F∈f .) 
 
Remark. In fact, ( )C,DC  is a (complete) metric space. A normal family F  has a 
(sequentially) compact closure. 
 
Definition. A family ( )C,DF C⊆  is said to be equicontinuous on D⊆E  if for all 

0>ε  there is a 0>δ  such that ( ) ( ) εδ <−⇒<− wfzfwz  for all F∈f  and 
D∈wz, . 

 
Theorem 4.11. (Arzela-Ascoli) A family of functions ( )C,DF C⊆  is normal if and only 
if both 
(1) F  is equicontinuous on every compact subset D⊆K ; and 
(2) for each D∈z , ( ){ }F∈fzf  is bounded in C . 
 
Proof. (⇒ ) Suppose F  is normal. We first show that ( ){ }F∈fzf  is bounded. 
 
Suppose not. Then there is a sequence ( )nf  in F  such that ( ) nzfn > . Since F  is 
normal there is a subsequence ( )

knf  such that ff
kn →  uniformly on compact subsets. If 

so, ( ) ( ) 1<− zfzf
kn  for large k ; then ( ) ( ) 1+< zfzf

kn  for large k , a contradiction, 
since a continuous function is bounded on a compact set. 
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We now show that if F  is normal then F  is equicontinuous on each compact D⊆K . 
 
Suppose not. Then there is a compact D⊆K  such that 00 >∃ε  such that N∈∀n  

Kwz nn ∈∃ ,  such that nnn wz 1<−  and ( ) ( ) 0ε≥− nnnn wfzf  for F∈nf . Since F  is 
normal, there is a subsequence ( )

knf  of ( )nf  such that ff
kn →  uniformly on compact 

subsets. I.e., for any 0>ε  and compact E , ( ) ( ) ε<− zfzf
kn  for all Ez∈  and 

sufficiently large k . For our compact set K  there exists N  such that ⇒> Nk  
( ) ( ) 3

0ε<− zfzf
kn  for all Kz∈ . Since f  is continuous on D  it is uniformly continuous 

on K . Hence, there is a 0>δ  such that ( ) ( ) 3
0εδ <−⇒<− wfzfwz  for all Kwz ∈, . 

Then 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,0

333
000

ε

εεε

=

++<

−+−+−≤−
kkkkkkkkkkkk nnnnnnnnnnnn wfwfwfzfzfzfwfzf

 

 
which contradicts ( ) ( ) 0ε≥− nnnn wfzf  above. 
 
(⇐ ) Now suppose F  satisfies (1) and (2); let ( )nf  be a sequence in F . 
 
We show that ( )nf  has a subsequence that converges on a dense set of points 
{ } D⊆∈Nmzm . We can always find such a countable collection, e.g. an enumeration 
of ( ) D∩+ QQ i . 
 
For 1zz = , by (2), ( ){ }N∈nzfn 1  is bounded. So there is a subsequence ( )

lnf 1
 such that 

( )11
zf

ln  converges as ∞→l . Now take a subsequence ( )
lnf 2

 of ( )
lnf 1

, by (2), such that 
( )22
zf

ln  converges as ∞→l . Continue inductively, obtaining rows of subscripts 
 

K<<< 131211 nnn  
K<<< 232221 nnn  

M  
K<<< 321 kkk nnn  

M  
 
such that each row is a subset of the one above it, and such that ( )mn zf

kl
 converges as 

∞→l  for km ,,1K= . Take the diagonal sequence 
lll nn ff = , N∈l . It is easy to see that 

for any m , ( )mn zf
l

 converges as ∞→l . 
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We now show that for any compact D⊆K  

lnf  is uniformly Cauchy on K , i.e. 0>∀ε , 

N∈∃N  such that ( ) ( ) ε<−⇒∈> zfzfKzNji
ji nn,, . (Exercise: Check that being 

uniformly Cauchy on compact subsets implies uniform convergence on compact subsets.) 
Let 0>ε . Since F  is equicontinuous on K , 0>∃δ  such that F∈∈∀ fKwz ,, , 

( ) ( ) 3
εδ <−⇒<− wfzfwz . Since K  is compact we can cover K  with a finite number 

of balls of radius 2
δ≤ . Since { }N∈mzm  is dense, we can choose a mz  in each ball, say 

Mzz ,,1 K . Let N  be such that ( ) ( ) ε<−⇒> mnmn zfzfNji
ji

,  for Mm ,,1K= . Then for 

Kz∈ , 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ε

εεε

=

++<

−+−+−≤−

333

zfzfzfzfzfzfzfzf
jjjiiiji nmnmnmnmnnnn

 

 
So, given (1) and (2), F  is normal. 

 
 
Definition. ( )C,DF C⊆  is locally uniformly bounded on D  if D∈∀ oz , ( ) D⊆∃ 0zBR  
such that 0>∃M  such that ( ) F∈∈∀ fzBz R ,0 , ( ) Mzf < . 
 
Theorem 4.12. (Montel’s Theorem) If ( )C,DF C⊆  is a locally uniformly bounded 
family of holomorphic functions then F  is a normal family. 
 
Proof. By Arzela-Ascoli we need to check 
(1) D∈∀z , ( ){ }F∈fzf  is bounded; 
(2) D⊆∀ Kcompact  , F  is equicontinuous on K . 
 
(1) is clear, since F  is locally uniformly bounded. 
 
(2) We first show that given D∈0z  ( ) D⊆∃ 0zBR  such that F  is equicontinuous on 

( )0zBR . Since F  is locally uniformly bounded ( ) D⊆∃ 0zBr  and 0>M  such that 

Mf <  for all F∈f . Let 0>ε , ( )02, zBzw r∈  and F∈f . 
 

( ) ( ) ( )
( )( )

( )
( )( )

( )( )
( )( )( )∫

∫∫

∂ −−
−

∂ −∂ −

=

−=−

02

0202

2
1

2
1

2
1

zB wz
wzf

i

zB w
f

izB z
f

i

r

rr

d

ddwfzf

ξ

ξξ

ξξ
ξ

π

ξ
ξ

πξ
ξ

π

 

 
Use the Estimation Lemma with 2, rwz ≥−− ξξ : 
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( ) ( ) ( ) wzrMwfzf r

M
r

wz −=≤− − 4
22

1 22 ππ  

 
Let M

r
4
εδ = . Then we have that F  is equicontinuous on ( )02 zBr . Any compact D⊆K  

can be covered by such discs, and this cover has a finite subcover. So F  is 
equicontinuous on K . 

 
 
Theorem 4.13. (Riemann Mapping Theorem) Given any simply connected domain 

C⊂U  and U∈0z  there is a unique conformal bijection Df →U:  such that ( ) 00 =zf  
and ( ) 00 >′ zf . 
 
Proof. Uniqueness has already been shown. Consider 
 

( ) ( ){ }0 ,0 1,-1 c,holomorphi : 00 >′=→= zfzffDf UF  
 
and proceed to show 
(1) ∅≠F ; 
(2) F∈∃f  with maximal derivative at 0z ; 
(3) the f  in (2) maps onto D . 
 
Step 1. Let U\C∈a . ( ) azzg −=  is never zero on U . g  has a square root; we can find 
a branch of the multivalued function az −  that is holomorphic on U . Set 
( ) azzh −= . h  is one-to-one on U : if azaz −=− 21  then 21 zz = . 

 
If ( ) wzh =  for some U∈z  then h  never takes the value w−  in U . Since C→U:h  is 
holomorphic, it is open, by the Open Mapping Theorem. So there is a ( )( ) ( )UhzhBR ⊆0 . 
By the above, ( )( ) ( )( )00 zhBzhB RR −=−  is such that ( )( ) ( ) ∅=∩− UhzhBR 0 . So ( )Uh  
lies in the interior of ( )( )0zhBR − . 
 
We can construct a linear fractional transformation k  that takes ( )( )0\ zhBR −C  onto D . 
We can further compose with a linear fractional transformation of the form 
 

( ) ( )( )
( )( )zzhk

zhkziezj
0

00

1 o

o

−
−= θ . 

 
Then ( )( ) 00 =zhkj oo  and ( ) 0)( 0 >′ zhkj oo . 
 
Step 2. Let ( )0sup zfM

f
′=

∈F
. Let F∈nf  be such that ( ) Mzf

nn ∞→
→′ 0 . Observe that since F  

is (locally) uniformly bounded ( D  is bounded), ∞<M  by Cauchy’s Integral Formula. 
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By Montel’s Theorem, F  is a normal family. Hence, ( )nf  has a subsequence ( )
knf  

converging to some f  uniformly on compact subsets U⊆K . C→U:f  is 
holomorphic, ( ) 00 =zf  and ( ) Mzf =′ 0 . Furthermore, since 1<

knf , 1<f , i.e. 

( ) Df ⊆U . 
 
We now show f  is one-to-one. Choose U∈1z ; show ( ) ( )1zfzf ≠  for { }1\ zz U∈ . Put 

( ) ( ) ( )1zfzfzg
kkk nnn −= . 

kng  converges uniformly to ( ) ( )1zfzf −  on compact subsets of 
U , and on every compact subset of { }1\ zU . Since 

kng  is never zero on { }1\ zU , by 
Hurwitz’s Theorem, either ( ) ( )1zfzf −  is never zero on { }1\ zU  or it is everywhere zero. 
But f  is non-constant since ( ) 00 >=′ Mzf . 
 
Step 3. We proceed by contradiction: suppose ( )UfDw \0 ∈∃ . Then the linear fractional 

transformation ( )
( )zfw
wzfz

0

0
1−

−a  is foφ  where zw
wzzDD
0

0
1:: −
−→ aφ  and foφ  is never zero 

on U . Therefore, there exists a branch of the square root 
 

( ) ( )
( )zfw
wzfzF

0

0
1−

−= . 

 
Note that ( ) DF ⊆U  and F  is one-to-one. Further compose F  with the linear fractional 
transformation ψ , 
 

( ) ( )
( )

( )
( )0

0

0

0

1 zF
zF

zzF
zFzz ′

′

−
−=ψ . 

 
Again note that DF →U:oψ  is one-to-one and ( )( ) 00 =zFoψ , 
 

( ) ( )
( ) ( )

( )
( )
( ) 2

0

0

2
00

0

1

01
1

0)(

zF

zF

zFzF
zF zFzF

+

′

+′
′

=

′=′oψ
 

 

 ( ) ( )02

1
0

0

2
0 zfzF
w

w ′=′ −  

⇒  ( ) MzF
w

w

0

2
0

2

1
0

−=′  

 
 ( ) 0

2

0
2

0 111 wwzF −=−−=−  

⇒  ( )

M

M

MzF

w

w

ww

w

>

=

=′

+

−
−

0

0

00

2
0

2

1

1
1

2

1
0)( oψ
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So there is no such 0w , so ( ) Df =U . 
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5. HARMONIC MAPS 
 
Let nR⊆Ω  be some open set. A function R→Ω:u  satisfies Laplace’s  equation if 
 

0
11

=++
nnxxxx uu K . 

 
Such a function, where the first and second partial derivatives exist and are continuous, is 
called harmonic. 
 
Dirichlet Problem. Let nR⊂Ω  be a bounded domain and let R→Ω∂:f  be 
continuous. Find a solution to the boundary value problem 
 

0
11

=++=∆
nnxxxx uuu K  on Ω , 

fu =  on Ω∂ . 
 
When 2=n  we can use complex analysis to solve the Dirichlet Problem. Recall that if  

C→+= D:ivuf  is holomorphic then vu,  are harmonic on D . 
 
First note that if, for example, ( ) ( ) 2122log, yxyxu += , ( ) 0, ≠yx , is harmonic on { }0\C  
there is no holomorphic { } CC →0\:f  for which fu Re= . 
 
Theorem 5.1. Given a harmonic function R→U:u  on a simply connected domain 

C⊆U  there is a holomorphic C→U:f  such that fu Re= . 
 
Proof. If there were such an f  we would have xx ivuf +=′  and yx ivuf +=′ . Consider 

yx ivug += . We see that g  is holomorphic since 
 

( ) ( )
yyyyxxxx uuuu −=−== , 

( ) ( )
xyyxxyyx uuuu −−=== . 

 
Then by Cauchy’s Theorem, 0=∫γ g  for every closed curve γ  in U . By Theorem 2.1, 

g  has an anti-derivative on U . Let f  be an anti-derivative of g  on U . cuf +=Re  for 
some constant c . cf −  is a holomorphic function with ( ) ucf =−Re . 

 
 
Corollary 5.2. Let C⊆U  be a simply connected domain and C→U:f  holomorphic. 
If ( ) R→Ufu :  is harmonic then fu o  is harmonic. 
 
Proof. Let ( ) C→Ufg :  be holomorphic such that gu Re= . Then ( )fgfu oo Re=  is 
harmonic. 
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Hence, if we can solve the Dirichlet Problem on D  and can find a bijective conformal 
map Dg →U:  such that DUg →:  is continuous, we can solve the Dirichlet Problem 
on U . 
 
Theorem 5.3. Let R→D:u  be harmonic. Then it satisfies the Mean Value Property 
that D∈∀ 0z  and ( ) D⊆0zBr , 
 

( ) ( )∫ +=
π

π

2

0 02
1

0 dtrezuzu it . 

 
Proof. Let ( ) C→0: zBf r  be holomorphic such that fu Re= . By Gauss’ Mean Value 
Theorem, 
 

( ) ( )∫ +=
π

π

2

0 02
1

0 dtrezfzf it . 

 
Now take real parts. 

 
 
Theorem 5.4. (Maximum Principle) Suppose R→D:u  is harmonic and non-constant 
on a connected domain D . The u  cannot attain a maximum on (the interior of) D . 
 
Proof. This follows directly from the Mean Value Property: suppose there were a 
maximum at D∈0z . Since 
 

( ) ( ) ( )0

2

0 02
1

0 zudtrezuzu it ≤+= ∫
π

π , 

 
( ) ( )itrezuzu += 00  for all rt,  such that ( ) D⊆0zBr . So u  is constant, a contradiction. 

 
 
We return to the Dirichlet Problem for the disc. Let R→∂DF :  be continuous. Find the 
harmonic function R→Du :  such that u  is continuous on D  and ( ) ( )θ

θ

i

ez
eFzu

i
=

→
lim . 

 
Boundary values determine the function on the interior for holomorphic functions by 
Cauchy’s Integral Formula 
 

( ) ( )
( )∫∂ −=

0
2
1

zB z
f

i
r

dzf ξξ
ξ

π . 

 
Theorem 5.5. (Poisson’s Integral Formula) Let u  be harmonic on a domain containing 

( )0RB . Then for ( )0R
i Brez ∈= θ , 
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( ) ( ) ( )∫ +−−
−=

π

θπ
θ 2

0 cos22
1

22

22 dteRureu it
rtRrR

rRi . 

 
( ) ( ) ( ) 22

22

cos2
,,,

rtRrR
rRtRrPtP

+−−
−==
θ

θ  is called the Poisson kernel. 

 
Proof. Let ( ) C→0: RBf  be holomorphic with fu Re= . Use a “reflection trick” to 
show 
 

( ) ( ) ( )∫=
π

π
θ 2

02
1 dteRftPref iti . 

 
This will immediately yield the desired result by taking real parts. We can assume 

0≠θire  since the result is immediate from the Mean Value Theorem otherwise. Set 
θi

r
R

z
R ez 22* == . Then 

 
( )

( )
0

02
1

* =∫∂ −
RB z

f
i dξ

ξ
ξ

π  

 
by Cauchy’s Theorem. So 
 

( ) ( )
( )

( )
( )

( )
( )

( )
( )∫

∫
∫∫

∂ −−
−

∂ −−

∂ −∂ −

=

−=

−=

0 ))((2
1

0
11

2
1

02
1

02
1

2

22

*

*

)(

R

R

RR

B zRz
rR

i

B zzi

B z
f

iB z
f

i

df

df

ddzf

ξξ

ξξ

ξξ

ξξπ

ξξπ

ξ
ξ

πξ
ξ

π

 

 
Substitute in iteR=ξ , θirez = : 
 

( ) ( )( )

( )( )

( ) 22

22

cos2

))((

rtrRR
dti

reeRreeR
dti

erRRreeR
dteiR

zRz
d

iitiit

tiiit

it

+−−

−−

−−−−

=

=

=

−−

−

θ

ξξ
ξ

θθ

θθ

 

 
Hence, 
 

( ) ( ) ( )∫ +−−
−=

π

θπ

2

0 cos22
1

22

22 dteRfzf it
rtRrR

rR . 

 
 
Theorem 5.6. Let ( ) R→0: RBu  be harmonic; suppose u  is continuous on ( )0RB . For 

( )0R
i Brez ∈= θ , 
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( ) ( ) ( )∫=
π

π
θ 2

02
1 Re dtutPreu iti . 

 
Proof. Let 1↑nt  and set ( ) ( )ztuzu nn = . nu  is harmonic on ( )0RB . By Theorem 5.5, 
 

( ) ( ) ( )
( )
( )θ

θ

θπ

π

i

n

i
n

i
n

it
n

reu

retu

reudteRutP

∞→
→

=

=∫
2

02
1

 

 
We show 
 

( ) ( ) ( ) ( )∫∫ ∞→
→

π

π

π

π

2

02
1

2

02
1 dteRutPdteRutP it

n

it
n . 

 
Consider the quantity 
 

( ) ( ) ( )∫ −=
π

π

2

02
1 dteRueRutPI itit

nn . 

 
Given 0>ε , ( ) ( ) ε<− itit

n eRueRu  for sufficiently large n , since u  is uniformly 

continuous on ( )0RB . So 
 

( ) 02

2

02
1

∞→
→=< ∫ nn dttPI π

ε
π

π ε . 

 
 
Theorem 5.7. Let ( ) R→∂ 0: RBF  be continuous. Define 
 

( ) ( ) ( )∫ =−−
−=

π

θπ
θ 2

0 cos22
1

22

22 dteRFreu it
rtRrR

rRi . 

 
Then (1) u  is harmonic on ( )0RB ; and 
(2) ( ) ( )θθ ii

Rr
eRFreu =

→
lim . 

 
Proof. (1) Key fact: if iteR=ξ , θirez = , then ( ) ( )z

ztRrP −
+= ξ

ξθ Re,,, . Hence, if gu Re=  
for some holomorphic g , 
 

 ( ) ( ) ( )∫ −
+=

π

ξ
ξ

π

2

02
1 Re dteRFzu it

z
z

⇒  ( ) ( )∫ −
+=

π

ξ
ξ

π

2

02
1 dteRFzg it

z
z  
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g  is holomorphic in z : 
 

( ) ( )
( ) ( )( ) ( )

( ) ( )dteRF

dteRF

it
zh

it
hzzh

zghzg

∫

∫

−→

+−−
−+

→

=

π

ξ
ξ

π

π

ξξ
ξ

π

2

0

2
2
1

0

2

0

2
2
1

2

 

 
Since gu Re= , u  is harmonic. 
 

(2) We show ( ) ( ) 0
Rr

ii eRFreu
↑
→− θθ . Trick: ( ) πθ

π
2,,,

2

0
=∫ dttRrP . 

 

( ) ( ) ( ) ( ) ( )( )∫ −=−
π θ

π
θθ θ

2

02
1 ,,, dteRFeRFtRrPeRFreu iitii  

 
Note that if θ=t  then ( ) rR

rRtRrP −
+=,,,θ . Choose 0>ε . We can find 0>δ  such that 

( ) ( ) εδθ θ <−⇒<− iit eRFeRFt . Then 
 

( ) ( ) ( ) ( )

( )
ε

ε

ε

π

π

δθ

δθπ

δθ

δθ

θ
π

=

<

<−

∫

∫∫
+

−

+

−

2

02
1

2
1

2
1

dttP

dttPdteRFeRFtP iit

 

 

Consider ( ) ( ) ( )∫
+

−
−

δθ

δθ

θ
π dteRFeRFtP iit

2
1 . When [ ] [ ]πδθδθ 2,,0 +∪−∈t ,  

 
( )

( )

( )( )

( )
δ

δ

δ

δδ

δ

2

22

22

22

22222

22

22

22

sin
2

sin

sin

coscos2

cos2

R
rR

R
rRrR

R
rR

RrRR
rR

rRrR
rRtP

−

−+

−

+−
−

+−
−

≤

≤

≤

≤

≤

 

 
We can choose 0>′δ  such that ( ) εδ <⇒′<− tPrR . Then 
 

( ) ( ) ( ) MdteRFeRFtP iit ε
π θ

π <−∫
2

02
1 . 
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Remark. We can modify the proof to show that ( ) ( )θ
θ

i

eRz
eRFzu

i
=

→
lim  and show that u  is 

continuous on ( )0RB . 
 
Theorem 5.8. Suppose R→D:u  is continuous and satisfies the Mean Value Property. 
Then u  is harmonic. 
 
Proof. Choose ( ) D⊆0zBR . By Theorem 5.7 there exists a harmonic function u~  on 

( )0zBR  such that ( ) ( )00

~
zBzB RR

uu
∂∂

= . Then uu −~  satisfies the Mean Value Property and 

0~ =− uu  on ( )0zBR∂ . Hence uu =~  on ( )0zBR . 
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