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1. DIFFERENTIABILITY AND THE CAUCHY-RIEMANN EQUATIONS

Definitions. A domain D c C is an open subset of the complex plane. IL.e.,

Vz, € D Je& >0 such that {zeC | |z—zo|<g}gD.
We denote {z eC | |z - zo| < g} by B,(z,) and call it the & -ball centred at z, .

Definitions. A function f:D — C is called differentiable (or holomorphic) at z, € D if

lim S(z0+8)-1(z0)
-0 g

exists, in which case the limit is called the derivative of f at z,, denoted f'(z,).

Exercises. Show that if f(z)=u(z)+iv(z)=u(x,y)+iv(x,y)

(D

lim SR = 2 ()42 (x,,,)
(2

lim SRl = 2 (), v ) =i 2 (xg, 20)

k—0in R
and hence that the Cauchy-Riemann equations hold at z:

a=%
Theorem 1.1. Let f =u+iv:D — C. Suppose that

Ou Ou Ov Ov H H : H
(1) %555 all exist in some neighborhood of (xo,yo)e D and are continuous at

(xo’yo);
(2) u,v satisfy the Cauchy-Riemann equations.

Then f is differentiable at (xo, yo).

Later we will see that if is (once) differentiable then it is differentiable infinitely many
times.

Proposition 1.2. If f =u +iv is holomorphic then u,v are harmonic functions.

Proof.



The equation ZZT{ +% =0 is Laplace’s equation for f:R* > R.

We can perform an identification of C with R* so that

fZUD—)(‘(‘:
R? R?

Recall. Let F:D c R* > R? and (x,,y,)e D. We say F is differentiable at (x,,y,) is

there exists a linear function L,  ): R’ — R* such that

i HF(XO"‘h’yO+k)_F(xo’yo)_L(xo,yo)(h’kX‘ _
1m =
(h.k)—>0 ||(h,k)|

L, ) 1s called the derivative of F at (x05 7, )5 dF

ROPRY Y

If F =(F,,F,) is differentiable at (x,,y,) then £ % % %% exist at (x,, y,) and

Ox > 0y ® Ox > Oy

oo
_| ox (&
L(xo,yo) TR OF

Ox oy

(xo »Yo )

If for F=(F,F):D—R” the partial derivatives 2 % 2% %  oxist in a

Ox > dy ® Ox > Oy

neighbourhood of (x,,y,) and are continuous at (x,,y,) then F is differentiable at

(xoayo)-

If f:D—C, f=u+iv, is holomorphic then consider the corresponding R*-valued
function; it derivative matrix will be of the form

Given a+ib we have a map C—>C:zr>(a+ib)z and a linear map R> >R?:
(x,y) > (ax —by,bx +ay).



are holomorphic functions.

o0

Theorem 1.3. For any power series f(z)=>" a,(z-z,)' 3Re [0,00] called the radius

n=0 "

of convergence such that

(1) Zj; N (z—z,)" converges absolutely for |z - ZO| <R;

(2) ZZO a,(z—z,) diverges for |z - zo| >R.

R= l/lim sup|an|1/ !

n—>0

= 1/lim(a,, |/|a,|)

a

if the limit exists.

Theorem 1.4. Let f (z): zw a (z -z, )" have radius of convergence R>0. Then f is

n=0 N
holomorphic on B,(z,) with derivative f '(z)zznwzlnan(z—zo)"*l, and this derived

series has radius of convergence R.

Example. The real function f (x)= ¢" has the Taylor expansion
=l +i ST
and R =, so we define
€ =l+z+i+o+. . +E+...

Note that for ye R,



e =1+(iy)+ ([yz?z + ([;)3 +...

LI . LR
= 1—74‘7—... +ly_T+?_"'

=cosy+isiny
Also,
eZ+117 — ezelv ,
e =" =¢'e” =e*(cos y+isiny).

We would like to define z+>logz as the inverse of z+>e”. However, there is a

z+27n z—w

problem, since e =¢" forneZ.e =e"=e " =1=z-—w=2mn forsome neZ.

Definition. The multi-valued function /:C\{0}— C that assigns to each w the values

h(w) such that €™ = w is the logarithm function, log. It is well-defined up to multiples
of 27

How does the exponential function transform the complex plane?

[SH

iy, +2

2x,

We can find, for each we C\{0}, a z such that e* =w and y, <Imz <y, +27. This is
called choosing a branch of log ; the usual choice is — 7 to .

The function on C\{xeR | x<0} that gives the unique zeC such that ¢ =w and
—7n <Imz <7 is called the principal branch of log and is denoted Log.

If w=re' where —7 <6<z then Logw=logr+i@, where logr is the usual real
logarithm of r.



Exercise. Show Log:C\{xeR | x<0}— C is holomorphic. (Hint: use the relations
ReLog(x+iy)=log+/x* +y* , ImLog(x +iy)= arctan(%).)

The problem of finding a maximal domain on which a given holomorphic function can be
defined leads to the study of Riemann surfaces.

A distinguishing property of a domain is whether or not it has a “hole”.

Examples. These domains have “holes”:
(1) C\0;
2) Arl’rz(z): {we C | 7 <|z—w| <r };

(3) B,(0)\ B, (i).

Examples. These domains have no “holes”:
(1) D=B,(0);
(2) C.

Definition. An open set D is called simply connected if it has no “holes” and multiply
connected if it has at least one hole. (More precisely, D is simply connected if
7T, (D,z)= {0} for all ze D — see MA3F1 Introduction to Topology for an explanation of

the fundamental group.)

Definition. D < C is connected if it cannot be expressed as the disjoint union of two
non-empty open proper subsets.

Definition. D c C is path connected if any two points z,z" € D can be joined by a path
in D, a continuous y :[a,b]— D such that y(a)=z, y(b)=z".

Definition. D < C is step path connected if any two points z,z' € D can be joined by a

step path in D, a path consisting of a finite number of pieces, each of which is parallel to
either the real or imaginary axis.

Proposition 1.5. A domain D < C is path connected if and only if it is step path
connected.

Proof. (<) A step path is a path, so this direction is trivial.

(=) Suppose D is path connected and let z,z' € D. We require a step path from z to
z'. Let y:[0,]]>D be a path from z to z'. For each te€[0,1] choose a ball
Bg(t)(y(t))gD. U o Bg(t)(y(t)) is a cover of the curve in D. [0,1] is compact, so
7([0,1]) is compact, so this cover admits a finite subcover U”_ Bg(tk)(y(tk)). We can

choose a sequence of points (s, ),



Lh=5<s5<..<s5,_,<8, =1,

such that y([s,,s,,])c Bg(t‘_)(]/(ti )). We can replace #([s;,s,,]) with a step path in
Bg(,i)(y(ti )) (since balls are clearly step path connected) to obtain a step path in D.
]
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2. COMPLEX CONTOUR INTEGRATION

Definition. Let f:D—C be a continuous function and let y:[a,b]>D be a

(piecewise) C' path. Then we define the contour integral of f over y by

| 1= £z = s e
where

y(f)= x(e)+iv(t)= /()= '()+iy’()
J. )+ iv(t dt:jbu(t t+lj

Examples. (1) f(z)=1, y:[0,27] > C:t > re"

7=l
_j A gt
=], ’2: dt

=2

@) f@)=|", ne)=(+i), cefo,1].

[ =[N iy (i)
=1+ (1+ i)jolt2 dt

_3(1+)
7,(t)=t+it?, t€[0,1].
L f =I01(t2 141+ 261 dt

1 1
- jotz +r dt+ij02t3 + 265 dt

(i)

_8 45
_15+l()

Definition. If y is a “sum of curves” y =y, +y, +...+y, then



MA3B8 COMPLEX ANALYSIS

ny:zzzljykf'

Theorem 2.1. (The Fundamental Theorem of Contour Integrals) Let f:D —C be

continuous. Then the following are equivalent:
(1) [ has an anti-derivative on D, i.e. AF : D — C such that F'= [ ;

(2) L f is dependent only on the endpoints of y .

Proof. (1)= (2): Suppose F'= f. Choose z,,z,€ D and y:[a,b]—> D a path joining
them.

By the Chain Rule,

and this depends only on z, and z,, not y.

(2)= (1): Choose z, e D. Define F(z J. f(w)dw. Choose &, such that B, () D.
Then for & < &,, take y(¢)=z+ &, t<0,1]:

=J.;f(z+5t)dt

Now use continuity to obtain

-10 -
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Corollary 2.2. f(z)=1 does not have an anti-derivative on C\{0}.

Proposition 2.3. Let f: D — C be continuous. Then the following are equivalent:
(1) Iﬂ f =0 for every closed curve (contour) f;

(2) J.y f depends only upon the endpoints of y, y a path.

Proof. (2)=(1): Let S:[a,c]>D be a closed curve. We require Iﬂsz. Let
be(a,.c).Bb)

Let g, = ﬂ|[a’b] and S, = ﬂ|[b,c] be the two resulting paths.

/=01

Let —f, be the curve f, traversed in the reverse direction: —f, :[0, 1]—>D,

_ﬁz(t)z ﬁz(c+t(b—c)).

[, 7= [ do-cN e do-cNo—cla
~ [ 7))
= [ B, (0)) B2 0 )
= [ 1(8,0))B1a)
- Iﬁz f

-11 -
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Hence,

[, 7=1,7+,1
=], 71,7

(1)=(2): Suppose 7,7, are two paths in D starting and finishing at the same points
respectively.

Let S be the path y, then —y,.
0=, 1=l s+l =000
|

Look at f(z)=1; this has no anti-derivative on C\{0}. Let F(z)=Logz; F is defined
on C\{xeR | x<0}.

Exercise. Show Log/(z)="1.
The difference lies in the existence of holes as opposed to simple connectedness.

Ultimately, we will prove Cauchy’s Theorem:

Cauchy’s Theorem. If f : U — C is holomorphic on a simply connected domain U then
J. f =0 for every closed curve y in U.
/4

Definition. Let y: [a,b]—> C be a closed curve not passing through 0 C. Then the
winding number of y around 0 is the (integer) number of times that » winds around 0
in the counter-clockwise direction.

-12 -
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w(y,0)=15] Ldz.

Definition. Let 7:[a,b]—> C be a closed curve not passing through z, € C. Then the
winding number of y around z, is

W(j/’ ZO) = ﬁjy z—lzo dZ *
We could write #(7)= z, + r(t)e“g(’) , where 6(¢) is a continuous choice of argument. Then

b (1))
L J' Lo [Tl@e) g
27 y 2750 27}, r(r)eV

= (logr(b)—logr(a)+i6(b)—i6(a))
=5-(6(6)-6(a))

= change in angle/27

Definition. Let &/ — C be connected. U is simply connected if w(y,z,)=0 for all closed
curves ¥y in U and z, ¢ U .

Theorem 2.4. Suppose U < C is simply connected and y is a triangular path in U . If
f:U — C is holomorphic then J. f=0.
/4

Lemma 2.5. Let f:D — C be continuous and y a path in D. If |f(7(t)) <M then
[
V4

Proof of 2.5.

< Mf(}/), where f(}/) is the length of the path y .

Ry
< [ GOy 0)dr

<M J'b| y'(¢e)dt
=M((y)

-13 -
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Proof of 2.4. By taking midpoints of the edges we have four new paths:

VENF Tty
o=l 1+, 7+ 7.1

We show J. f =0 by showing j f‘zO.
4 V4
A<l A A A
Choose k such that J.y f1=1 L f|. Label y, =y'. Note that é(yl):%ﬁ(y). Continue the

subdivision process to find a sequence of triangular paths (;/”) such that

b

[ 1z6)|] 1
)= ).

Let 7" be the triangle bounded by y". Since f(}/”)—)O we have N7 T" :{zo} by

Baire’s Theorem. Now since f is holomorphic (at z,), given ¢ >0, 35 >0 such that

w_f'(zd <g,le.

z=Zy

for |z—zo|<5,

|f(z)—f(zo)—f'(zo)(z—zol < 8|Z—ZO| .

Since the 7" are shrinking to {ZO}, dN eN suchthat 1> N=T" Bﬁ(zo). Hence, for

n>N and zey",

|f(Z)_f(Zo)_f’(Zo)(Z_Zo] <gg(7/”)_

Thus, by Lemma 2.5,

-14-
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<ally )= 2 (¥

_L,, f(Z)_f(Zo)_f'(Zo)(Z_Zo)dz

Observe that Ln — f(z,)- f(z, Nz =z2,)dz =0, s0

[ f]=eC)y ey
= O WEEOR)
= ny <el(y)
= ‘L f‘ =0

Corollary 2.6. Let f:B.(z,)— C be holomorphic. Then f has an anti-derivative on
Br(ZO)’

Proof. Let 7. be the radial path in B (z,) from z, to z and define F (z)=.[ f. We
Vz
wish to show that F'(z)= f(z).

Corollary 2.7. If f:U — C is holomorphic on a simply connected domain U then for
every rectangular path y in U, I f=0.
Y

-15-
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Proof.

[ r=] r+] r=0

Theorem 2.8. (Cauchy’s Theorem) If f :U — C is holomorphic on a simply connected
domain U then I f =0 forevery closed curve y in U.
v

Proof. Let y:[a,b]—> U be a closed curve. Cover y([a,b]) with discs D, ; choose a finite
such that ¥([t,z.,,])< D,, where

2%+l

subcover D,,...,D

a=t, <t <..<t_ <t =b.

In D, let S be a step path such that ﬂ,-(ti)= 7(t,«), ,Hi(t,-+1)= 7(%). By Proposition 2.3,
.[ f= L} /. Let B be the path given by the f, in order; = f,+...+ ,. Then
4 ;

‘[fiJHl]

J.ﬁf:z:;oj-ﬁ[f'

We now show that f# can be written as a sum of rectangular paths. To do this, extend all
horizontal and vertical segments of £ to lines, thus breaking the plane up into a finite
number of rectangles R, some of which may be infinite. In the interior of each R,

choose a point z; and let

v, =w(ﬂ,zj).

Collect all R . with v, #0 and, after re-indexing, say these are R,,...,R,. Let GRJ. be the

rectangular path in the boundary of R, traversed in the anti-clockwise direction. Define

the path E by

~ k
B=2. = ViOR,; -

-16 -
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We claim that f = ,5; . Suppose not — then there is some line segment L in E and not in
B . Suppose there are + g copies of L (L < OR;, say +q copies if L is traversed in the

direction coinciding with the direction of OR,, —q otherwise).

Now let o = ﬁ — B —qOR,; ; the path « contains no copies of L. Hence,

~

s ol i)

. =—q,
W(a’zj’): W(ﬂ’z«/’)_ W(ﬂ’ Zj’)= 0.

Since a contains no copies of L, w(a,zj): w(a,z/,), so g=0.

Now since U is simply connected and f: U/ — C is holomorphic, LR f =0 forall j,
=0.
SO J.y f

]
Theorem 2.9. Let f:D — C be holomorphic and let y be a closed curve in D that

does not wind around any points outside of D. Then I f=0.
/e

Remark. This is a strengthening of Cauchy’s Theorem.

Proof. First replace » with a step path £ as in Proposition 1.5 so that J-ﬁ f :J.y f.

Second, break up the plane into rectangles R, and take z, € R,. Collect the R, for which
v,=w(B,2,)#0 and re-index as R,,...,R,. As before, ﬂzz;vl@Ri. R <D by the
assumption that y (and hence ) does not wind around any points not in D, so

-[aR,f =0 by Corollary 2.7. Hence Lf = L;f =0.
|

Corollary 2.10. If f:U — C is holomorphic and U simply connected then f has an
anti-derivative on U .

Theorem 2.11. (Generalized Cauchy Theorem) Let f:D — C be holomorphic and let

Y=y, +...+y, beasum of closed contours in D with
w(j/,z): w(yl,z)+...+ w(yn,z): 0

forall z¢D. Then .[ f=0.
v

17 -
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Proof. Construct a new closed curve 6 in D by adding segments + o, , 1<i<n. Choose
w, € D and let w, be the starting / finishing point of y,. Let o, be a path in D from w,
to w,. Let :(0'1 +7, —01)+...+(0” +7, —0'”), a closed curve.

For z¢ D,

By Cauchy’s Theorem,

0= .Lf = Z:lzl.[o-ﬁy,—oif N 'Lf .

Theorem 2.12. (Cauchy’s Integral Formula) Let f: D — C be holomorphic and z, € D .

Choose R>0 such that By(z,)< D and let y be a closed contour in B,(z,) with
w(y,z,)=1. Then

f(Zo):ﬁJ‘ ff(;) dz.

}’Z

Proof. 22 is holomorphic on D\ {z,}.

z-z,

s =], =),

by Theorem 2.11, where 0 <7 <R.

-18 -
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Definition. A holomorphic function defined on all of C is called entire.

Theorem 2.13. (Liouville’s Theorem) Let [ :C — C be a bounded entire function. Then
f is constant.

Proof. Suppose f is entire and bounded; let M >0 be such that VzeC, |f (zl <M.
We show that f (z) =f (O) by Cauchy’s Integral Formula:
fe)=35],, o i aw
S0)=35], St
So,
S&)=rO)=5], A= dw
— o (w)
N ﬁ.[aBR(o)mdw
1/(2)= (0] = 5 77 (0B, (0))
_ M|
R—‘z‘
— 0
R—
So f(z)=/(0).
|

Theorem 2.14. (The Fundamental Theorem of Algebra) Let p:C—>C be a non-
constant polynomial with coefficients in C. Then 3z, € C such that p(z,)=0.

Proof. Suppose VzeC, p(z)¢ 0. Then j;; is entire. |p(z]‘ — o0, s0 3K >0 such that

2|

|z|>K = p(12) <1. Moreover, since % is continuous on B,(0), IM >0 such that
S| <M for ze B, (0). So + is bounded on C. Liouville’s Theorem implies that - is a

constant, so p is a constant, a contradiction.
|

Theorem 2.15. (Gauss’ Mean Value Theorem) Suppose f: B, (ZO)—> C is holomorphic.
Then for 0<r<R,

-19 -
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2z .
flz,)= %.[0 f(zo + re”)dt .
Proof. This follows from Cauchy’s Integral Formula:

f(Zo) = ﬁ.[as,(zo)%dz

= [P s ) el d
27 0 re

= ﬁj‘;” f(z0 +re" )dt
|

Theorem 2.16. (Maximum Modulus Principle) Let f:D — C be holomorphic and non-
constant on a connected domain D. Then | f | cannot attain a maximum in (the interior

of) D.

Proof. Suppose not — suppose | f | attains a maximum at z, € D, i.e. | f (20] > | f (z)| for all

zeD. Choose R>0 such that BRiz0 )c D. By Gauss’ Mean Value Theorem, for all
O0<r<R,

f(Zo):ﬁJ.OZ”f(Zo +re" )dt

2z

= |f(Zo)|S$J.O ‘f(zo+re”1dté|f(zol

2

= |f(Zol:$ 0 ‘f(zo+’”€itldt

It follows that V¢ €[0,27]7 € (0,R),

f(zol :‘f(zo +re”1.

Hence, if | f | is maximized at z, 3B,.(z,)< D such that | f | is maximized on B,(z,).

Hence D' = {z eD | |f(z)| = |f(zo)|} is an open set, but since |f| 1S continuous it is also
closed. Hence, by connectedness, D' =D .
|

Theorem 2.17. Let f IBR(ZO)—>(C be holomorphic. Then [ has a power series

expansion on B, (Z0 ) :

for z € By(z,), and furthermore

-20 -
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1 /(=)
4 = 2m .[aB,.(zo) (z=20)"™"! dz,

where 0<r <R.

Proof. (Sketch Proof.) We work from the formula f(z)=4 %dw. Expand -~ ina

/4
power series centred at z;:

1 2 @ 1 ¢
= zZ — ZO
w—z n=0 \w—zo

Substitute into the integrand. It then remains to show that we can integrate term-by-term.
]

With this theorem in hand we can describe the local behaviour of a holomorphic map.
Consider f(z) =z k>2.

WA
(AANIAND,

Consider D = B,(0); f maps D to D'=B,(0). Forany we D'\{0}, f'(w) consists of
k distinct points in D. Moreover, there is a neighbourhood U, of w such that

f(U,)=1",U,, where the U, are disjoint neighbourhoods of the k pre-images of w,
and f

covering, branched over 0 € D.

:U, > U, 1s a homeomorphism. We say that f (z)= z* is a k-fold branched

U;

In fact, any holomorphic map is a k -fold branched covering:
S)=1(z)=2 a(z=2)

If f isnon-constant 3n € N such that a, #0; let & be the smallest such 7.

f(z)_f(zo): ak(z—zo)k +ak+1(z—zo)k+1 ..
:(Z_Zo)k(ak +ak+1(Z_ZO)+"')

(-2 el2)

-21 -
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Since g(z,)#0, 3r>0 such that g(z)=0 for all ze B.(z,). Now by Question 12 on
Question Sheet 1 there is a holomorphic 4: B,(z,) — C such that 4(z)' = g(z), so

f(2)- f(z))=((z = z))h(2))"

H(z)

Observe that H'(z,)=h(z,)#0.

By the Inverse Function Theorem, H is invertible, i.e. is a change of coordinates. So
f(z)- f(z,) is a k -fold branched convering.

Theorem 2.18. (Open Mapping Theorem) If f: D — C is a non-constant holomorphic
map then f is open, i.e. Yz, € D there is an open neighbourhood U of f (ZO) such that

Uc (D).

Proof. This follows from the above local model of holomorphic maps.
|

Theorem 2.19. The zeroes of a non-constant holomorphic function f:D —C are
isolated, i.e. if f(z,)=0 3B,(z,)< D such that f(z)#0 for z € By(z,)\{z,}.

Proof. By the local behaviour of f we know that 3B,(z,)< D such that

/

Balz) : By(z9) > f(Bi(2,))

is a k -fold branched covering branched over z,, so z, is the only zero of f in the disc.
]

Theorem 2.20. Let f,g:D—>C be holomorphic. Suppose f(zn)zg(zn) for a

convergent sequence of distinct points in D, z, >2€D. Then f=g on D.
Proof. Let 7= f—g. h has a non-isolated zero at Ze D, and so #=0 on D. Hence

f=gonD
|

-22 -
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Example. sin’z+cos’z=1 for zeR, so sin’z+cos’z=1 for zeC.

-23 -
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3. POLES, RESIDUES AND INTEGRALS

Definition. If f:B.(z,)\{z,} > C is holomorphic then f is said to have an isolated

singularity at z,, .

Examples.
f(z)="1Lsinz
glz)=1
h(z)=e"

Theorem 3.1. (Laurent’s Theorem) Suppose f is holomorphic on the open annulus
Ay g, (z,)= {z eC | R, <|Z—ZO| <R, } where R, >R, >0. Then [ has a Laurent series

expansion on A= 4, (z,):

with

1 S(w)
a =-- dw,
n 27 aBr (Zo ) (W—ZO )n+1

R <r<R,.

Proof. (Sketch proof.) Use Cauchy’s Integral Formula:

C/(t)=z,+Re", t[0,27]
C,(t)=z,+ Rie", t[0,27]

-4 -
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Observe that w(C, —C, —3B,(z),z')=0 for all z'¢ A\{z}. By the Generalized Cauchy
Theorem,

f(e)= ja&_(z)a‘_“ﬁdwﬁ[ A - [ L)

For . ( )dw expand —- as a power series centered about z:
2

Z ZO)

_zno

<1. For IC %_ﬁzldw expand:

z-zy

since Wz,

1—z = Zj:() (W_ ZO)n (Z—zt)’”l

zzo

since >1. Integrate term-by-term to obtain the claimed Laurent series expansion.

Examples. (1) & = ijo z" for |z| < 1. Hence,

Vz _
==t =t ) for [2[>1.
(2)
)
=1-Z+Z-

(3) — is its own Laurent series for £ >1.
(4) For |z/>0,

eV =14 (= L) (LY /24 (1) 31+

T
n=0 n' z

Definition. A holomorphic function f:B,(z,)\{z,} = C is said to have a removable

singularity at z, if f can be extended to a holomorphic function on B, (zo).

-25-
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Proposition 3.2. Let f: B,(z,)\{z,} = C be holomorphic. Then the singularity at z, is
removable if and only if [ is bounded on B, (ZO)\ {ZO} for some 0<r<R.

Proof. (=) Trivial.

(<) Assume | f | is bounded by M on B.(z,)\{z,}. We will show that in the Laurent
expansion f(z)=> a,(z-z), a,=0 for n<0.

neZ N

_ 1 f(z)
4, =3[,

—n—1
SN N0 CREN
Hence, by the Estimation Lemma,

<L Mr 2

- 2z

=Mr™

arl

Mr™ — 0 so a, =0 for all negative n. So the Laurent series is, in fact, a power series,

r—0

/)= el

for z € By(z,)\{z,}. By defining f(z,)=a, we have a holomorphic extension of f to

BR(ZO)'

Proposition 3.3. Let 1 : B,(z,)\{z,} = C be holomorphic. Suppose lim f(z)=oco. Then

7z,

AN e N such that n>N =a , =0.
We say that f has a pole of order N at z,.

Proof. g(z)= +t7 18 holomorphic on B, (z,)\{z,} for some 0< R <R. Observe that
lim g(z)=0, hence g is bounded on B,.(z,)\{z,}, 0<R"<R’. So

7z,

g(z)z (Z—ZO)N(bN +bN+1(Z—ZO)+bN+2(Z—ZO)2 +...), by #0

Take h(z):bN +bN+1(Z—ZO)+ bN+2(z—zo)2 +...,80

glz)=(z-2)"n(z).

-26 -



MA3B8 COMPLEX ANALYSIS

Moreover, h(z)# 0 for z € By(z,), so

f(Z): (z—:O)N hlz
= ijo a,(z-z)

Note that a, #0.
|

Corollary 3.4. g has a pole of order N at z, if and only if + has a zero of order N at

Zy-

Definition. If f has an isolated singularity at z, that is neither removable nor a pole

then f is said to have an essential singularity at z,,.

Corollary 3.5. f has an essential singularity at z, if and only if in the Laurent

expansion of [ about z, there are infinitely many n € N such that a_, #0.

Proposition 3.6. Suppose f : B, (Zo)\ {ZO} — C has an essential singularity at z,. Then in

any neighbourhood of z,,, f takes values arbitrarily close to any a € C.

Theorem 3.7. (Picard’s Theorem) Let f have an essential singularity at z,€ C. Then
on any small neighbourhood of z,, [ takes every value in C, with possibly one

exception.

Although essential singularities are wildly behaved, in some sense poles are no worse
than zeroes.

Idea. A holomorphic function f:B,(z,)\{z,} = C whose singularity at z, is not
essential can be extended to a holomorphic function f: B,(z,) — C U {w}.

We call @z(Cu{oo} the Riemann sphere. Topologically, C is the usual two-

dimensional sphere, the one-point compactification of R*. Complex analytically we can
represent it as the unit sphere in R*, §* = {(u,v, w)eR® [ u? +v +w' =1 ;l, whose points

are identified with C via stereographic projection 7 :S*> — C.
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For (u,v,w)eSz\{(0,0,l)}, ﬂ(u,v, w)zthe point of intersection of the line through
(0,0,1) and (u,v,w) with the (u,v)-plane. Define 7(0,0,1)= 0.

The line through (0,0,1) and (u,v, w) is parameterized by t(0,0,1)+(1—t)(u,v, w). The
value of ¢ corresponding to 7z(u,v,w) is where #+(1—#)w=0, so # = . Hence,

Consider f:@—)@, f(z)=§. This can be considered as a map j}:S2 — S?, where
f=n'ofor. z is a coordinate on S2\{0,0,1)} and L is a coordinate on

521{(0,0,~1)}. Hence, S* (or C) can be considered as two copies of C with variables
z and w respectively, under the identification <1E  where z ~w < z,w# 0,z =1,

Suppose f has a pole at z;:

VL G2 5 ¢
B,(z,)—>C >C
Z > 455, holomorphic near z,

We can consider the behaviour of a holomorphic function near oo:

f{zeC|lz>R}>C
gw)=7() on fweC | 0<uf <]

We will say that f has a zero / removable singularity / pole / essential singularity at oo if
g has a zero / removable singularity / pole / essential singularity at 0 .
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Examples. (1) f(z)=; g(w)=f(1)= i =55 - Jf has a zero of order 1 at oo.

w

) f(z)=2"+1; g(w):f(%):#+l; k eN. f hasapole of order k at co.
(3) fl2)=e; glw)=e

. f has an essential singularity at oo.

Definition. Let D = C be a domain. A function f:D—> C that s holomorphic except at
a finite number of poles is called meromorphic.

Theorem 3.8. 4 meromorphic function f : C — C is a rational function, i.e. a quotient

of two polynomials, f(z) = ﬁ%}, p.q € (C[z].

Proof. Let {zi}f:1 be the set of poles of f in C; say the order of the pole at z; in n,.

FEMTL =) =g(2)

g 1s entire; we require that g be a polynomial.

Now, at o, since f has at worst a pole at oo, say of order m :

f (i)H; (%— z, )”’ = g(ﬁ) near w=0

g(z) = Z::O az"',zeC

gw)=2" a, ()

a,=0for n>n +...4+n,+m,so g is a polynomial.

the linear fractional transformations.
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Definition. If f: B,(z,)\{z,} > C has an isolated singularity at z, we define the residue
of f at z, tobe

Res(f,zo)=ﬁj.a ( )f(z)dz=a_1, 0<r<R.

Theorem 3.9. (Cauchy’s Residue Theorem) Let f:D — C be holomorphic except
possibly at isolated singularities. Let y be a simple (i.e. non-self-intersecting) closed
curve in D such that all points inside y are contained in D and w(;/,z)zl for all z
inside y . Then

J-yf - 27Ziz.1;=1 Res(f’zj)’

where z,,...,z, are the singularities of f inside y .

In order to make sense of the term “inside y” we need the Jordan Curve Theorem, which
we shall not prove:

Theorem 3.10. (Jordan Curve Theorem) If y is a simple closed curve in C then C\y
consists of two disjoint domains: a bounded domain (the “inside of y ”) and an
unbounded domain (the “outside of y ”), and the curve y is the boundary of each of
these two domains.

Proof of 3.9. Let I' denote the inside of y. Choose small circular paths y,,...,y, centred

on z,...,z, respectively such that , cI' and w(;/i,z j): o, - We claim

Lf:.[ylf+...+J'”f.
This follows from the Generalized Cauchy Theorem, which guarantees that
=0.
J.}/f+'|-*71f+ +J‘*7/<f
for if D' =neighbourhood of y Uneighbourhood of T\ {zl,. . .,zk} and z¢ D',

Wy === 702) =y, 2) = (W, 2)+. 4wl 2) = 0.

Hence,
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J =201
:2711'Z;Res(f,zj)

Examples. Let f: B,(z,)\{z,} = C.
(1) A simple pole (a pole of order 1):

f(z)z Z”;Z‘o +a, +a1(z—zo)+a2(z—zo)2 +...

Write f(z)= %(g; at a singularity / pole, g(z)#0, h(z)=0. Look at /'(z,); if #(z,)#0

then f has a simple pole at z, .

lim(z - Zo)f(Z) =a,

Z—)ZO

If /=% then
lim(z ) (2)=lim 55 =
by I’Hopital’s Rule.

(2) A pole of order £ :

f@)=r"r+. v +a(z—z,)+az—z,) +...

(22 ) E

Multiply through by (z — ZOY :

(z—zo)kf(z)= a, +a_(k_l)(z—zo)+...+a_l(z—zo)k71 +a0(z—zoyf +...

Differentiate k£ —1 times (using Leibniz’s Rule) and evaluate at z =z :

%(Z_Zo)kf(z): (k_l)!a—l
- a, =gy te(z-z) 1)

z=2

So, for example,
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Res(tjgi , 1)= 4(z41)

z=1
=2(z+1)
=4

z=1

() If f(z)=sin(})=L-L(1) + (L) —... then we see that Res(sinL,0)=1.

z

We can evaluate real integrals by means of residues.

0

Examples. (1) f 1:; dx=7%.

Consider f (z): = . Let y, be the straight path [— R,R] and the upper half of GBR(O).

1+z* °

37i/4

By the Residue Theorem, if p, =e™*, p, =e

LR f(z)dz = 2721'(Res(f, p1)+ Res(f, D, ))

Write f(z):%%%: Res(f,pj):%:%;:%m_ So
LR f(z)dz = %(eﬁﬂ/4 + 6_3’”/4)
=7

We now wish to show that the integral over the semicircular portion C, of the path goes
tozeroas R —

J. f‘ - ‘ [ #(Re" hRe" dt‘

= [7]/(Re" |Rat
Since [ < =22 on €,
[[|f(Re" |Rdt < E7 > 0
So

Z=lim| f=["dx.

4
2 R—xdyy oo 14X
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2) J':Si%dx -z,

Consider the curve y, . : the straight path [— R,—-06 ], the upper half of 0B; (0) , the straight
path [5,R], the upper half of 6B,(0).

By Cauchy’s Residue Theorem .[ < dz=0. First,

Vs.R

-0 ix R ix 3 —iu R ix
j- e—dx+.[ e—dx:I < (—du)+j dx
-R s~ R 5 *

u

R ix —ix
— e —e
= J.(S <—dlx

[ sns
5 X

00 .
5 s1$x dx
55090
R—0

Secondly, '[C < dz e 0:

dt

Tl iRet i
SJ ¢ jRe"

0 Re'

— J.” l'eiRe[I
0

eiz
I - dZ
CR

dt

A .
iR cost—Rsint

_ J’ e

0

dt

V4 -
— .[ e—Rsmt dt

0

72 _ sin
=2j e M dt
0
Observe that sinf >2¢,s0 —Rsint <—R-2¢:

< 2j "2 gamix gy
0

L dz
J‘CR z

7/2

— 2(_ ﬁ)e_ZRt/” .

5l1-e)

0

I =

R

{

00

Thirdly,
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o Tt ot
“dzr=— 1 oe" dt
c; 0 %

= —iI e dt
0

5_)0—1.[ 1dt

=—ir

So

0=lm dz = 21J- sinx oy —
R0 dysp
O—0

So J‘ Sinx gy — %, as claimed.

(3) [k d6 for a>1.

If z=¢", dz=ie” d@=izd@ and cos@=1(z+1).

2 1

1 1 d —
Ldz=2 dz
J-Sl a+%‘z+z’l ) iz )l 22 +2az+1

The zeroes of z*+2az+1 are z=—-a++a’+1. a=—a++a*+1 is inside S' and

f=—a—+a’ -1 is outside S'.

Res(Z T ,a): Res(mi;;,a)

SO J‘O ‘HCOSB dg - 2 2727 RCS( 242az+1 ,(Z)I 2z

(4) I ng

Take a branch of log such that the polar angle of z is in the interval 8 e (—1,7”) For

i6
z=re",

Relogz =logr
Imlogz =6
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This is possible for ze C\{iy | y<0}. Take f(z ) k’gz and consider J. f(z)dz.

x

[ £(z)dz = jwdx

1+x2
—R—>-05

[ 1(z)dz = j: o g

5—>R

Hence,

jf dZ—ZI log”a’x—i—m_[ 5

—R—>-0
S—>R
o0
SN 2 logx
550 0 1+x?
R—x

—ZI 1"g”abc+7zz (=)

We can show that IC f(z)d= 6—>00 and IC f(z)dz — 0. Therefore, by Cauchy’s Residue

R—x©

Theorem,

L f(z)dz =27 Res(f i)

= 27z lim E=)loez
zi 1422
__ logi
I 27

— 72'21

2

_)2.[ logxd +,”
50 0

l+x2
R—ox©

SoJ‘ lex gx =0, as required.

We can also use the Residue Theorem to find sums of series.

1 2

Example. z;o: 5=

Find a function with zeroes at integer points, e.g. sinz; has a simple pole at each

ner.

> sinz
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Res(smﬂz ’ ) hm e 1 = -

sin 7z T COSm a

Consider <=£ : this has residue L at z =n . Take a holomorphic function f .

Res(/(z)s2,n) =7

Vi

Yo
- - L ] L ] - - - >
-N 0 v
- Y
1
=== v N+

cosz| _ [cosm(x+iy
sinzz | | sinz(x+iy
im—ny

— |e " te
T _ ity

—im+ay

__| cos /Dc(e"“+e”’-" )—isin m(e”-”—e”’y) |

—cosm(e”y - )+1' sin m(e”y +e )

_ [P +e?P+2c082mx

2P 4e 2™ 2cos2mx

On vertical sides

soz| < e 22 <M for y >y, > 0. If [f(z) < ﬁforsomeM then

L f cot nzdz

<MW2(2N+1+J/O) e 0 with y,=N+1.

For f(z)=z7, since

e
— 2
Res(z % cot 7zz,n): m

S S
H
S O

Ln|.§1

o 2 .
we have that Z &> =%, as claimed.
n=
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4. CONFORMAL MAPS

Recall. F:R*> - R? is an isometry if Vx,y e R?, F(x)— F(ym = ||x - y|| . The isometries

of R” are the rigid motions: rotations about points, reflections about lines, translations
along lines, and composites of these.

We can relax the isometry condition and require only that maps preserve angles — what
does this mean?

Let F:R?* > R? be differentiable.

N
F(72)

Let 7,,7,:(~&,6)> R* be two small paths about z, e R?, so 7,(0)=7,(0)=z,. The
directed angle @ between y, and y, is given by cos(@): 71’(0)- 7/;(0). Similarly,

cos(g)=(F o 1,)(0)-(F 2 7,)(0)
= (dF o 7,)0)- (dF < 7, )0)

F preserves angles at z, if given paths y,,y, through z, the angle from Foy, to Foy,

equals the angle from y, to y,. In the diagrams above this corresponds to having 6 =¢.
Definition. F:U/ c R> — V c R’ is conformal if it preserves angles at all points of I/ .

Obviously, any isometry of R* is also a conformal map (if one agrees to ignore the
orientation-reversing properties of reflections).

Theorem 4.1. Let F:UcCR* 5>V cR?, F :(u,v), be differentiable with continuous
derivatives. Then F is conformal if and only if f =u+iv is holomorphic with f'(z) #0
for all points ze U .

Proof. (<) Suppose f is holomorphic at z, € U and that f'(z,)#0.1f y:(~&,6) > U
is a path through z, the tangent vectorto foy att=0 is

L (@), =S 0))'(0)= £"(z,)y'(0)
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which is simply '(0) expanded by | f ’(20] and rotated by arg 1'(z,).

(=) Suppose F' is conformal;

Consider
cos@
v, =dF ( ) j
sin @

— (cos e)(zj +(sin 9)&}

= (cos H)VO + (sin 9)v”/2

Since F' is conformal, the angle from v, to v, is @.

2
N cos@ = e _ m0ll _ (o gl
Ivolllvoll ~ Ivolllvel [Vl
— 7 3z
= [voll=Ivell V& =4.%

Also, the angle from v, to v_, is £-6.

= sin@ = 20— (in0)val _ (cos®) v
Hv”/ZHHVHH HV”/ZHHVQH [vol
- Vo =|v..| vO=0.7

Hence ||V6,|| =||V0|| for all 6.

The angle from (”x j to (My j is %, and by the above the two vectors have the same
Vy v,

length.

u,+iv, = z(ux +zvx): -V, +iu,

By the Cauchy-Riemann Equations u +iv is holomorphic and |/ ’(20)2 =u, +u, #0.
|

Definition. A map f: C - C is a linear fractional transformation if it is of the form
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flz)=%22L, as-py#0.

Since

(rz+oy (rz+5) ’

fr(Z): a(z+8)-y(az+fB) _ as-py =

linear fractional transformations are conformal.
Examples. f(z)=z+f; g(z)=0z; h(z)="1.

Proposition 4.2. The linear fractional transformations of C form a group G under
composition of maps.

Proof. Routine, with

fe)=55=)=5E
]

Proposition 4.3. The group G is triply transitive. lLe., if (21,22,23) and (wl,wz,w3) are

triples of distinct points in C then there is an f €G such that f(zl.)= w; for i =1,2,3.

Proof. We first show 3f € G such that (z,,z,,z, ) (0,1,00):
fle)==am

Then g(z)=222"""% takes (w;,w,,w;) to (0,1,00). Hence, k=g "o f takes (z,,z,,z,) to

Z=W3 Wr—w

(WI’WZ’W3)'
|

Proposition 4.4. A linear fractional transformation is determined by its values at three
distinct points.

Proof. For i=1,2,3 let z, C, f(z,)=w,. Let h be as in the proof of Proposition 4.3
above such that h(z,)=w,. Consider (h"l of):z,. >z, Let k=h"of, k(z)=%%

zZ+o

which fixes three distinct points.

oaz+f
z+s T

y=B=0, a=7,inwhichcase k=id. and 2= f".

z 1s a quadratic equation in z, which cannot have three distinct roots unless
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Theorem 4.5. A linear fractional transformation maps circles / lines to circles / lines.
(On the Riemann sphere C, lines and circles are the same.)

Proof. Let f be a linear fractional transformation and let C be a circle. We wish to
show that f (C ) is also a circle. Note that a circle C is determined by any three points
through which it passes. Choose z,,z,,z, € C distinct. From the proof of Proposition 4.3
there is a unique linear fractional transformation g such that g:(z,,z,,z, ) (0,1,0). In
fact, g takes C to R.

Claim. If h is a linear fractional transformation then 4 ™'(R) is a circle.

Proof. Write h(z)=“% and find a z such that h(z)eR.If h(z)eR then £ %4

7zZ+0 746 7+

Hence (az+ﬂ)(ﬁ+é_“):(oﬁ+ﬁ)(;z+5) and so

(007—5}/)|Z|2 +(a5—,§;/)z—(§5—,6’77)2+ﬂ5—,§5 =0.
Case I: if ay —ay =0 then we obtain a line since ad — fy #0.

Case 2: if ay —ay # 0 then the equation becomes A|z|2 +Bz+Bz+C=0, A=ay-ay,

B=ad -y, C=5—-B5. Since ad— By # 0, this is the equation of a circle, and the
claim is proved.

By the claim, g(C): R. Hence k=g 'of takes R to f (C), which is a circle by the

claim.
|

Although the one-to-one conformal maps from C to itself are quite rigid (they are
precisely the linear fractional transformations), on subdomains D — C they are quite
flexible. Ultimately we shall prove the Riemann Mapping Theorem:

Riemann Mapping Theorem. [ U — C is a simply connected domain there exists a
one-to-one conformal map f:U — D onto the open unit disc. Moreover, if we fix

z, €U we can find such an f:U—>D such that f(z,)=0 and f'(z,) is real and

strictly positive, and this uniquely determines f .

In most cases we cannot extend f to U = U V.
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Example.

_F

Definition. Two domains D,D’' — C are called conformally equivalent if there exists a
conformal bijection D — D'.

So the Riemann Mapping Theorem tells us that any simply connected domain is
conformally equivalent to the unit disc D.

Question. What are the conformal bijections D — D ?

Theorem 4.6. (Schwarz Lemma) Suppose f: D — D is holomorphic and that f (O) =0.
Then

(=) <[4 (+)
and ROE (++)
If equality is achieved for some z,€ D then f (z) ="z for some fixed 0, [0, 27[].

Proof. Consider the function g:z @ This has a removable singularity at z=0. We

show that |g(z)| <I.

Choose z, € D and |zo| <r<1.Now consider |g(zox :

g(z) = max |g(z)

| g(zoj < max nax,

‘Z‘Sr

f(2)

z

on 0B, (0) we have

by the Maximum Modulus Principle. Since |g(zj:

|g(zj _rG) <1, which is true for all |zo| <r<l; so |g(z)| <l= lin}%. Hence |f(z] < |z|

r i

VzeD.

Now since |f'(0)| = |g(0)| <1 we have (*x*).
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If | f (zo]=|zo| for some z,eD then |g(zol:1. Since by the Maximum Modulus
Principle g cannot attain maximum modulus on D unless |g| is constant, we have

_ it

|g(20)| =1= g(z) =¢'* for some real 6,.

Similarly, if | f(z,) =1,

g(0)=1,s0 g(z)=e*,s0 f(z)=e€"z.
|

Theorem 4.7. Let f:D — D be a conformal bijection. Then f is a linear fractional
transformation of the form

for some z, €D, 6,€[0,2x].

Proof. First check that a linear fractional transformation of the form f(z)= e T2 sends
D to itself.

Consider g=f"':D— D, which is also one-to-one conformal; (go f)z)=z, so
g'(7(2))f'(z)=1. Let z, e D be such that f(z,)=0,so0 g'(0)f'(z,)=1. Estimate |g'(0)| :
we know g(0)= z,, so put

Z—2Zy

Similarly, put f to be the inverse of z -

1-zyz

f( )_ z+zy
Z)= 1+Zyz *

2

So (fofXO): 0. Again by Schwarz’s Lemma,
|f,(Zol <

1z

/()70 <1. since 7(0)=1-z,

3
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Since f'(z,)g'(0)=1, |g'(0) = -1~ =[/"(z,).

= (7o 7Y(0) =1
= fo ]7 =%
= fle)=e™ 2

The uniqueness part of the Riemann Mapping Theorem follows easily from Theorem 4.7.
In the proof it is stated that if f:D — D is a conformal bijection with f (zo)= 0 then

f(z)=€" 22 for some 6, €[0,27]. If g:U — D is another conformal bijection such

1-Zyz

that g(zo)z 0 and g’(zo)> 0 then go f': D — D is a conformal bijection fixing 0. So

i,

(g o f Xz) = ¢z for some 6,, s0 g(z)=¢" f(z). Furthermore, since g'(z,)=¢" f"(z,),

=150 f=g.

The existence part of the Riemann Mapping Theorem will be shown by considering the
collection of functions

F={f:U— D | fholomorphic,1-1, f(z,)=0, f'(z,)>0}.

We need to show that 3f € F such that f(&/)=D. To do this we need to study certain
facts about spaces of continuous functions.

Let C (D, (C) be the collection of all continuous functions from an open domain D < C to
C. (We can replace C by any complete metric space.) What does it mean for a sequence
of functions f, to converge to some other function f in C(D,C)? What does it mean to

say that f,g e C(D, C) are close together?

We say that f, — f pointwise as n — oo if foreach ze D,

£,(2) = f(2).

n—0

However, this is not good enough as continuity is not necessarily preserved by taking a
pointwise limit.

We say that f, — f uniformly on compact subsets as n— oo if Ve >0 and compact
K <D 3N €N such that n>N,zeK:>|fn(z)—f(zX<g.
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If / — f uniformly on compact subsets and the f, are each continuous then f is
continuous.

Two functions f,geC (D,C) are close if they differ by a small amount on each compact
KcD.

Definition. Given a compact K <D, ¢>0, feC (D,C) let

B.(7.0)={ £ =C(D.C) sl ()-ele) <o -

zek

The sets BK( f ,6‘) form a basis for a topology on C(D,(C), called the topology of
compact convergence, equivalent to the compact-open topology on C(D, (C).

Proposition 4.8. { fn}g C(D,(C) converge to f € C(D,(C) in the topology of compact

convergence if and only if f, — f uniformly on compact subsets.

Theorem 4.9. Suppose f,: D — C are holomorphic functions converging uniformly to
some f on compact subsets. Then f is holomorphic. Moreover, f|— f' uniformly on

compact subsets.

Proof. We show that f is holomorphic by Morera’s Theorem. Let B,(z,)< D and let y

be a closed curve in BR(ZO). Since BRiZO} is compact and y is compact, and f, — f

uniformly on compact subsets, J. £, —>J. f. By Cauchy’s Theorem, I £, =0, so
7 /e /e

J.y f =0. By Morera’s Theorem, f is holomorphic on B, (ZO), so f is holomorphic on
D.

Choose z, € D and R >0 such that B,(z,)< D. Let z € By(z,).

e S (w)
— 7a By (zo) (W-2) dw

eAD

This implies that f’ — f” uniformly on compact subsets.
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Theorem 4.10. (Hurwitz’s Theorem) Suppose f,:D — C are holomorphic functions
converging uniformly to some f on compact subsets. If each f, has no zeroes in D then

either f has no zeroes in D or f is identically zero on D.

Proof. Suppose f is not identically zero. Suppose 3z, € D such that f (zo): 0. Since
the zeroes of a holomorphic function are isolated we can choose B,(z,)< D such that f
has no other zeroes in B,(z,). From Question Sheet 2 the number of zeroes of f in

BR(ZO) (counted with multiplicity) is LJ‘aB ( )’7 Since f, — f uniformly on compact

27

subsets,

1 S 1 J‘ f
27 IaBR(ZO) I 27 By (z) !

But ﬁj- ( )/—:”': 0 for each ne N since f, has no zeroes anywhere in D. So either f

0Bz, T

has no zeroes in D, or it is everywhere zero.
|

Definition. A family F < C(D,C) is said to be a normal family if every sequence (f,)
in JF contains a subsequence (fnk) that converges to some f uniformly on compact

subsets. (It is not necessary that f € F.)

Remark. In fact, C(D,(C) is a (complete) metric space. A normal family F has a
(sequentially) compact closure.

Definition. A family F < C(D,C) is said to be equicontinuous on E <D if for all
&>0 there is a 6 >0 such that |z—w|<5:>|f(z)—f(w]<5 for all feF and

z,weD.

Theorem 4.11. (Arzela-Ascoli) A family of functions F < C (D,C) is normal if and only
if both

(1) F is equicontinuous on every compact subset K < D ; and

(2) for each ze D, {f(z) | fe]—"} is bounded in C.
Proof. (=) Suppose F is normal. We first show that { f (z) | feF } is bounded.

Suppose not. Then there is a sequence (f,) in F such that | fn(z)>n. Since F is
normal there is a subsequence ( fnk) such that f, — f uniformly on compact subsets. If
I, (z)-f (z)( <1 for large k; then

since a continuous function is bounded on a compact set.

SO,

S, (ZX < | f (z)| +1 for large k, a contradiction,
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We now show that if F is normal then F is equicontinuous on each compact K = D.

Suppose not. Then there is a compact K <D such that 3¢, >0 such that Vne N
fi(z,)-f,(w,) 2, for f,eF. Since F is
normal, there is a subsequence (fnk) of (f,) such that Jf,, =/ uniformly on compact
fnk(z)—f(zX<g for all ze £ and
sufficiently large k. For our compact set K there exists N such that k>N =

3z ,w, € K such that |zn -w,

1
<+ and

subsets. l.e., for any £>0 and compact E,

S, (z)— f (ZX <% forall ze K . Since f is continuous on D it is uniformly continuous

on K. Hence, there is a 6 >0 such that |z—w|<§:>|f(z)—f(wl<% for all z,weK.
Then

gw
R
=
A
=
[\]
=
D —
=
N
=
|
=
5%
S —
+
=
$§
|
gw
—_
=
N —

which contradicts

f;’l (Zn )_ f;1 (Wn l > 80 abOVe.
(<) Now suppose F satisfies (1) and (2); let ( fn) be a sequence in F .

We show that ( fn) has a subsequence that converges on a dense set of points

{z, | me N} D. We can always find such a countable collection, e.g. an enumeration

of (Q+iQ)ND.

For z=z,,by (2), { f,(z,) | ne N} is bounded. So there is a subsequence ( fn”) such that

fnu(zl) converges as /[ — . Now take a subsequence ( fny) of ( fn”), by (2), such that

S, (Zz) converges as [ — oo . Continue inductively, obtaining rows of subscripts

ny <hy, <ny<...

Ny <My < Myy <.

My <My <My <...

such that each row is a subset of the one above it, and such that f, (z,) converges as
[ — oo for m=1,...,k . Take the diagonal sequence f, = f, , /€ N. Itis easy to see that

forany m, f, (z,) converges as [ — oo.
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We now show that for any compact K <D f, is uniformly Cauchy on K, i.e. V& >0,

AN eN such that i,j>N,zeK = ‘-f;z,- (z)—fnf(z)( <¢. (Exercise: Check that being

uniformly Cauchy on compact subsets implies uniform convergence on compact subsets.)
Let £>0. Since F is equicontinuous on K, 36 >0 such that Vz,weK, feF,
|z - w| <o= | flz)-r (w] <% .Since K is compact we can cover K with a finite number
of balls of radius < <. Since {z, | m € N} is dense, we can choose a z,, in each ball, say
Z,...,Z,, . Let N besuchthat i,j >N = nl_(zm)—fnj(zm)(<g for m=1,...,M . Then for

zekK,

So, given (1) and (2), F is normal.
|

Definition. F c C(D,C) is locally uniformly bounded on D if Vz, e D, 3B,(z,)c D
such that 3M > 0 such that Vz eBR(zo),f e F, (z)| <M.

Theorem 4.12. (Montel’s Theorem) If F gC(D,C) is a locally uniformly bounded
family of holomorphic functions then F is a normal family.

Proof. By Arzela-Ascoli we need to check
(1) VzeD, {f(z) | f eF} is bounded;
(2) Vcompact K < D, F is equicontinuous on K .

(1) is clear, since F is locally uniformly bounded.

(2) We first show that given z, €D HBRiZO ) D such that F is equicontinuous on
BRizoi. Since F is locally uniformly bounded EIB}_iingD and M >0 such that
|f|<M forall feF.Let&>0, wzeB,,(z)and feF.

f :ﬁLB/z (z) 62 d§ 27 .LB/ éi%dg

— _1
_EJ’B/ZZO fzfm é:

Use the Estimation Lemma with |§ -

_ .
W|22.

_47-



MA3B8 COMPLEX ANALYSIS

| X—an‘zw‘z =4

Let 6 =47 . Then we have that 7 is equicontinuous on B, , (z,). Any compact K < D

can be covered by such discs, and this cover has a finite subcover. So F is

equicontinuous on K .
|

Theorem 4.13. (Riemann Mapping Theorem) Given any simply connected domain
UcC and z,eU there is a unique conformal bijection f:U — D such that (ZO) =0

and f'(z,)>0.
Proof. Uniqueness has already been shown. Consider
={f:U— D | fholomorphic,1-1, f(z,)=0, f'(z,)>0}

and proceed to show

(1) F+3;

(2) 3f € F with maximal derivative at z;
(3) the f in(2) maps onto D.

Step 1. Let aec C\U . g(z): z—a 1s never zero on U . g has a square root; we can find
a branch of the multivalued function +z—a that is holomorphic on /. Set
h(z):\/z—a . h 1is one-to-one on U : if \/zl —a= \/22 —a then z, =1z,.

If h(z)=w for some ze U then h never takes the value —w in U . Since i:U — C is
holomorphic, it is open, by the Open Mapping Theorem. So there is a B, (h(zo )) c h(u )
By the above, — B, (h(z,))= By(~%(z,)) is such that — B, (h(z,))"h(U)=D. So h(UA)
lies in the interior of B, (— h(zo ))

We can construct a linear fractional transformation k that takes C\ B,(-4(z,)) onto D .
We can further compose with a linear fractional transformation of the form

)=t .

Then (jokoh)z,)=0 and (jokoh)(z,)>0
Step 2. Let M =sup f'(z,). Let f, € F be such that f/(z,) — M . Observe that since F

feF

is (locally) uniformly bounded (D is bounded), M <o by Cauchy’s Integral Formula.
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By Montel’s Theorem, F is a normal family. Hence, ( fn) has a subsequence (fnk)
converging to some [ uniformly on compact subsets KcU. f:U—>C is
holomorphic, f(z,)=0 and f'(z,)=M . Furthermore, since ‘fnk‘<1, |f|<1, ie.
fU)eD.

We now show f is one-to-one. Choose z, € U ; show f(z)# f(z,) for zeU\{z}. Put
g, (z)= S, (z)- S, (z,). g, converges uniformly to f (z)- f(z,) on compact subsets of
U, and on every compact subset of U/ \{z}. Since g, 1s never zero on U \{z,}, by

Hurwitz’s Theorem, either f(z)— f(z,) is never zero on U\ {z,} or it is everywhere zero.
But f is non-constant since f"(z,)=M >0.

Step 3. We proceed by contradiction: suppose 3w, € D\ f (Z/{ ) Then the linear fractional

transformation z H%@j is ¢o f where ¢:D —> D:z+ —> and ¢o f is never zero

1-w, f(z 1-wyz

on U . Therefore, there exists a branch of the square root

F(Z): fz)w )

1-wo /(2

Note that F(U)c D and F is one-to-one. Further compose F with the linear fractional
transformation

ve)= i

Again note that y o F : U — D is one-to-one and (o F)z,)=0,

(l//oF)’(ZO)z‘%Ez_ZgiH‘FEZO)‘Z F,(ZO)

— ‘F'(zo )‘
F(z )

F’(Zo): 12_\‘/%2‘ fl(zo)

= [F/(z) = Sk

1= |F (e, =1=[=w, =1

= 0o FY)= St

- 2 ‘wo‘ 1_‘“’0‘

_ Iy

) ‘wo‘

>M
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So there is no such w,, so f(U)=D.
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5. HARMONIC MAPS

Let Q — R" be some open set. A function u: Q — R satisfies Laplace’s equation if

o Foe U

Such a function, where the first and second partial derivatives exist and are continuous, is
called harmonic.

Dirichlet Problem. Let QcR" be a bounded domain and let f:0Q0—>R be
continuous. Find a solution to the boundary value problem

Au=u__+...4u, =0 on Q,

XX

u=f on 0Q.

When n=2 we can use complex analysis to solve the Dirichlet Problem. Recall that if
f=u+iv:D — C is holomorphic then u,v are harmonic on D.

First note that if, for example, u(x,y)= log(x2 +y° )/2 , (x,)#0, is harmonic on C\{0}
there is no holomorphic f:C\{0}— C for which u =Re f .

Theorem 5.1. Given a harmonic function u:U — R on a simply connected domain
U < C there is a holomorphic f:U — C such that u=Re f .

Proof. If there were such an f* we would have f'=u _+iv, and f'=u_ +iv, . Consider

g=u, +iv,. We see that g is holomorphic since

Then by Cauchy’s Theorem, J. g =0 for every closed curve y in U . By Theorem 2.1,
/4

g has an anti-derivative on U . Let f be an anti-derivative of g on U . Re f =u+c for

some constant ¢. f —c is a holomorphic function with Re( f- c) =u.
|

Corollary 5.2. Let U < C be a simply connected domain and f:U — C holomorphic.
If u :f(Z/I) — R is harmonic then uo f is harmonic.

Proof. Let g: f(U)—) C be holomorphic such that u =Reg. Then uo f = Re(g of) is

harmonic.
|
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Hence, if we can solve the Dirichlet Problem on D and can find a bijective conformal
map g:U — D such that g:U — D is continuous, we can solve the Dirichlet Problem
on U.

Theorem 5.3. Let u:D — R be harmonic. Then it satisfies the Mean Value Property
that ¥z, € D and B,izo )cD,

u(z,)= i.[;”u(zo + re”)dt.

Proof. Let f: B,iZO ) > C be holomorphic such that u =Re f'. By Gauss’ Mean Value
Theorem,

Now take real parts.
|

Theorem 5.4. (Maximum Principle) Suppose u:D — R is harmonic and non-constant
on a connected domain D. The u cannot attain a maximum on (the interior of) D.

Proof. This follows directly from the Mean Value Property: suppose there were a
maximum at z, € D . Since

u(z,) = i'[j”u(zo + re")dt <u(z,),

u(zo) = u(zo + re”) for all #,7 such that Brizo )= D. So u is constant, a contradiction.
]

We return to the Dirichlet Problem for the disc. Let /:0D — R be continuous. Find the
harmonic function u: D — R such that u is continuous on D and lim u(z)=F (ei 6).

z—>e'

Boundary values determine the function on the interior for holomorphic functions by
Cauchy’s Integral Formula

f(z) =17 0B, () I;(i) ds -

Theorem 5.5. (Poisson’s Integral Formula) Let u be harmonic on a domain containing
BRiO). Then for z =re' € B,(0),
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u(reig)z ﬁjanzu(Re” )dt )

0 R*-2Rrcos(0—t)+r

P(t)=P(r,0,R,t)= ng_w is called the Poisson kernel.
Proof. Let f :BAO)—)C be holomorphic with u=Re /. Use a “reflection trick” to
show

f(re’y ) =L J.OZH P(t)f(Re” )dt .

This will immediately yield the desired result by taking real parts. We can assume
re’’ #0 since the result is immediate from the Mean Value Theorem otherwise. Set

* 2 2 i
z :R—:RTe’g. Then

z

by Cauchy’s Theorem. So

f(z):ﬁ.[asﬂ(o) é(i) df—ﬁLBR(O)‘;_(—?dﬁ
=25 )y 0 F ()
=35 |, et /)

27 J 0B, (0) (6-2)(R*~£2)

Substitute in &= Re", z=re”:

dé _ iRe" dt
(.;,“—z)(R2 -£7) (Re” —re"’ )(szrRe"(’f/}))
_ idt
o iRe” —re'’ iReii' —re™?
_ idt
R*-2rR COS(H*[)#»I‘Z

Hence,

f(Z)=%J-2”W;’(;Mf(Re”)dL

0
|

Theorem 5.6. Let u:B,(0)— R be harmonic, suppose u is continuous on B(0). For
z=ré’ e BR(O),
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u(rei‘g): #Lz” P(t)u(Re” )dt :
Proof. Let 7, T1 and set u, (z)z u(tnz). u, 1s harmonic on BRiO}. By Theorem 5.5,

=+ .[02” P(t), (Re” )dt =u, (re’p)
=u (tnrei‘g )

— u(reie)

n—0

We show

L IOM P(t)u, (Re" )dt — - 02” P(tu(Re" )dt .

n—0

Consider the quantity
I =3+ .[02” P(tjun (Re” )— u(Re” 1 dt .

Given £>0, un(Re”)—u(Re"’}<g for sufficiently large n, since u is uniformly

continuous on BRiOi. So

Theorem 5.7. Let F :0B,(0) > R be continuous. Define

u(re’y ) = ﬁJ‘hLF(Re” )dt )

0 R*-2Rrcos(0-t)=r*

Then (1) u is harmonic on B,(0); and
(2) 1in1}u(rei9)= F(Reig).

Proof. (1) Key fact: if &=Re", z=re", then P(r,0,R,t)= Re(%). Hence, if u=Reg

for some holomorphic g,

u(z) =% [ RelE2)F(Re")ar
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g is holomorphic in z:

slebalel - (2 (R s

kL e

Since u =Re g, u is harmonic.
(2) We show ‘u(reig)— F(Re“’} = 0. Trick: J.OM P(r,0,R,t)dt =27 .
ulre”)-F(Re”)= £ [ P(r.0.R.0\F(Re" )~ F(Re" )

Note that if =6 then P(r,H,R,t)z%. Choose £>0. We can find 6 >0 such that
|t —9| <O=> ‘F(Re”)—F(Re’H} < ¢ . Then

£ [P |F(Re" )~ F(Re” ) dt < 5 [ )t

2

We can choose &' >0 such that [R—r{< &' = |P(t] <¢&.Then

;.[02” p(z)1F(Re"’)— F(Re“’}dt <&M .

2
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Remark. We can modify the proof to show that lim u(z): F (Rei ‘9) and show that u is

z—>Re'

continuous on B,(0).

Theorem 5.8. Suppose u:D — R is continuous and satisfies the Mean Value Property.
Then u is harmonic.

Proof. Choose BRiz0 )c D. By Theorem 5.7 there exists a harmonic function # on
BRizoi such that u | o8y (e) = Ylap, () Then u —u satisfies the Mean Value Property and

i —u=0 on 0B,(z,). Hence & =u on B,(z,).
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