UNIVERSITY OF WARWICK

MA3B8 COMPLEX ANALYSIS

Autumn Term 2002

Lectured by Doctor Young-Eun Choi

Typed by Tim Sullivan

INDEX

1.	Differentiability and the Cauchy-Riemann Equations	3
2.	Complex Contour Integration	9
3.	Poles, Residues and Integrals	24
4.	Conformal Maps	37
5.	Harmonic Maps	51

1. DIFFERENTIABILITY AND THE CAUCHY-RIEMANN EQUATIONS

Definitions. A *domain* $\mathcal{D} \subseteq \mathbb{C}$ is an open subset of the complex plane. I.e.,

$$\forall z_0 \in \mathcal{D} \ \exists \varepsilon > 0 \text{ such that } \{z \in \mathbb{C} \ | \ |z - z_0| < \varepsilon \} \subseteq \mathcal{D}.$$

We denote $\{z \in \mathbb{C} \mid |z - z_0| < \varepsilon\}$ by $B_{\varepsilon}(z_0)$ and call it the ε -ball centred at z_0 .

Definitions. A function $f : \mathcal{D} \to \mathbb{C}$ is called *differentiable* (or *holomorphic*) at $z_0 \in \mathcal{D}$ if

$$\lim_{\delta \to 0} \frac{f(z_0 + \delta) - f(z_0)}{\delta}$$

exists, in which case the limit is called the *derivative* of f at z_0 , denoted $f'(z_0)$.

Exercises. Show that if f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) (1)

$$\lim_{h \to 0 \text{ in } \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{\partial u}{\partial x} (x_0, y_0) + i \frac{\partial v}{\partial x} (x_0, y_0)$$

(2)

$$\lim_{k \to 0 \text{ in } \mathbb{R}} \frac{f(z_0 + ik) - f(z_0)}{ik} = \frac{\partial v}{\partial y} (x_0, y_0) - i \frac{\partial u}{\partial y} (x_0, y_0)$$

and hence that the *Cauchy-Riemann equations* hold at z_0 :

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Theorem 1.1. Let $f = u + iv : \mathcal{D} \to \mathbb{C}$. Suppose that (1) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ all exist in some neighborhood of $(x_0, y_0) \in \mathcal{D}$ and are continuous at (x_0, y_0) ; (2) u, v satisfy the Cauchy-Riemann equations. Then f is differentiable at (x_0, y_0) .

Later we will see that if is (once) differentiable then it is differentiable infinitely many times.

Proposition 1.2. If f = u + iv is holomorphic then u, v are harmonic functions.

Proof.

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial x \partial y}$$
$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial y \partial x}$$

The equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ is *Laplace's equation* for $f : \mathbb{R}^2 \to \mathbb{R}$.

We can perform an identification of ${\mathbb C}$ with ${\mathbb R}^2$ so that

$$f: \underset{\mathbb{R}^2}{\mathcal{D}} \to \underset{\mathbb{R}^2}{\mathbb{C}}$$

Recall. Let $F : \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ and $(x_0, y_0) \in \mathcal{D}$. We say F is *differentiable* at (x_0, y_0) is there exists a linear function $L_{(x_0, y_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$\lim_{(h,k)\to 0} \frac{\left\|F(x_0+h,y_0+k)-F(x_0,y_0)-L_{(x_0,y_0)}(h,k)\right\|}{\left\|(h,k)\right\|} = 0.$$

 $L_{(x_0,y_0)}$ is called the *derivative* of F at (x_0, y_0) , $dF_{(x_0,y_0)}$.

If $F = (F_1, F_2)$ is differentiable at (x_0, y_0) then $\frac{\partial F_1}{\partial x}, \frac{\partial F_2}{\partial y}, \frac{\partial F_2}{\partial x}, \frac{\partial F_2}{\partial y}$ exist at (x_0, y_0) and

$$L_{(x_0, y_0)} = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix}_{(x_0, y_0)}$$

If for $F = (F_1, F_2): \mathcal{D} \to \mathbb{R}^2$ the partial derivatives $\frac{\partial F_1}{\partial x}, \frac{\partial F_1}{\partial y}, \frac{\partial F_2}{\partial x}, \frac{\partial F_2}{\partial y}$ exist in a neighbourhood of (x_0, y_0) and are continuous at (x_0, y_0) then F is differentiable at (x_0, y_0) .

If $f: \mathcal{D} \to \mathbb{C}$, f = u + iv, is holomorphic then consider the corresponding \mathbb{R}^2 -valued function; it derivative matrix will be of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Given a+ib we have a map $\mathbb{C} \to \mathbb{C} : z \mapsto (a+ib)z$ and a linear map $\mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (ax - by, bx + ay)$.

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Examples. Power series such as

$$f(z) = \sum_{n=0}^{\infty} a_n z^n , \ a_n \in \mathbb{C} ,$$
$$g(z) = \sum_{n=1}^{\infty} b_n (z - z_0)^n , \ z_0, b_n \in \mathbb{C} ,$$

are holomorphic functions.

Theorem 1.3. For any power series $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad \exists R \in [0, \infty] \text{ called the radius of convergence such that}$ (1) $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges absolutely for $|z - z_0| < R$; (2) $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ diverges for $|z - z_0| > R$.

$$R = \frac{1}{\lim_{n \to \infty}} |a_n|^{1/n}$$
$$= \frac{1}{\lim_{n \to \infty}} (|a_{n+1}|/|a_n|)$$

if the limit exists.

Theorem 1.4. Let $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ have radius of convergence R > 0. Then f is holomorphic on $B_R(z_0)$ with derivative $f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}$, and this derived series has radius of convergence R.

Example. The real function $f(x) = e^x$ has the Taylor expansion

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

and $R = \infty$, so we define

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots$$

Note that for $y \in \mathbb{R}$,

$$e^{iy} = 1 + (iy) + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \dots$$

= $\left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} - \dots\right)$
= $\cos y + i \sin y$

Also,

$$e^{z+w} = e^{z}e^{w},$$

 $e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$

We would like to define $z \mapsto \log z$ as the inverse of $z \mapsto e^z$. However, there is a problem, since $e^{z+2\pi i n} = e^z$ for $n \in \mathbb{Z}$. $e^z = e^w \Longrightarrow e^{z-w} = 1 \Longrightarrow z - w = 2\pi i n$ for some $n \in \mathbb{Z}$.

Definition. The multi-valued function $h: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ that assigns to each w the values h(w) such that $e^{h(w)} = w$ is the *logarithm* function, log. It is well-defined up to multiples of $2\pi i$

How does the exponential function transform the complex plane?

We can find, for each $w \in \mathbb{C} \setminus \{0\}$, a z such that $e^z = w$ and $y_0 \le \text{Im} z < y_0 + 2\pi$. This is called *choosing a branch of* log; the usual choice is $-\pi$ to π .

The function on $\mathbb{C} \setminus \{x \in \mathbb{R} \mid x \le 0\}$ that gives the unique $z \in \mathbb{C}$ such that $e^z = w$ and $-\pi < \operatorname{Im} z < \pi$ is called the *principal branch of* log and is denoted Log.

If $w = re^{i\theta}$ where $-\pi < \theta < \pi$ then $\log w = \log r + i\theta$, where $\log r$ is the usual real logarithm of r.

Exercise. Show $\text{Log}: \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \le 0\} \to \mathbb{C}$ is holomorphic. (Hint: use the relations $\text{Re} \text{Log}(x+iy) = \log \sqrt{x^2 + y^2}$, $\text{Im} \text{Log}(x+iy) = \arctan(\frac{y}{x})$.)

The problem of finding a maximal domain on which a given holomorphic function can be defined leads to the study of *Riemann surfaces*.

A distinguishing property of a domain is whether or not it has a "hole".

Examples. These domains have "holes": (1) $\mathbb{C} \setminus 0$; (2) $A_{r_1,r_2}(z) = \{ w \in \mathbb{C} \mid r_1 < |z - w| < r_2 \};$ (3) $B_2(0) \setminus \overline{B_{1/2}(i)}.$

Examples. These domains have no "holes": (1) $D = B_1(0)$; (2) \mathbb{C} .

Definition. An open set \mathcal{D} is called *simply connected* if it has no "holes" and *multiply connected* if it has at least one hole. (More precisely, \mathcal{D} is simply connected if $\pi_1(\mathcal{D}, z) = \{0\}$ for all $z \in \mathcal{D}$ – see *MA3F1 Introduction to Topology* for an explanation of the fundamental group.)

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is *connected* if it cannot be expressed as the disjoint union of two non-empty open proper subsets.

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is *path connected* if any two points $z, z' \in \mathcal{D}$ can be joined by a path in \mathcal{D} , a continuous $\gamma : [a,b] \to \mathcal{D}$ such that $\gamma(a) = z$, $\gamma(b) = z'$.

Definition. $\mathcal{D} \subseteq \mathbb{C}$ is *step path connected* if any two points $z, z' \in \mathcal{D}$ can be joined by a step path in \mathcal{D} , a path consisting of a finite number of pieces, each of which is parallel to either the real or imaginary axis.

Proposition 1.5. A domain $\mathcal{D} \subseteq \mathbb{C}$ is path connected if and only if it is step path connected.

Proof. (\Leftarrow) A step path is a path, so this direction is trivial.

(⇒) Suppose \mathcal{D} is path connected and let $z, z' \in \mathcal{D}$. We require a step path from z to z'. Let $\gamma: [0,1] \to \mathcal{D}$ be a path from z to z'. For each $t \in [0,1]$ choose a ball $B_{\varepsilon(t)}(\gamma(t)) \subseteq \mathcal{D}$. $\bigcup_{t \in [0,1]} B_{\varepsilon(t)}(\gamma(t))$ is a cover of the curve in \mathcal{D} . [0,1] is compact, so $\gamma([0,1])$ is compact, so this cover admits a finite subcover $\bigcup_{k=1}^{n} B_{\varepsilon(t_k)}(\gamma(t_k))$. We can choose a sequence of points (s_i) ,

$$t_1 = s_1 < s_2 < \ldots < s_{n-1} < s_n = t_n$$

such that $\gamma([s_i, s_{i+1}]) \subseteq B_{\varepsilon(t_i)}(\gamma(t_i))$. We can replace $\gamma([s_i, s_{i+1}])$ with a step path in $B_{\varepsilon(t_i)}(\gamma(t_i))$ (since balls are clearly step path connected) to obtain a step path in \mathcal{D} .

2. COMPLEX CONTOUR INTEGRATION

Definition. Let $f: \mathcal{D} \to \mathbb{C}$ be a continuous function and let $\gamma: [a,b] \to \mathcal{D}$ be a (piecewise) C^1 path. Then we define the *contour integral* of f over γ by

$$\int_{\gamma} f = \int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

where

$$\gamma(t) = x(t) + iy(t) \Longrightarrow \gamma'(t) = x'(t) + iy'(t),$$

$$\int_a^b u(t) + iv(t)dt = \int_a^b u(t)dt + i\int_a^b v(t)dt.$$

Examples. (1) $f(z) = \frac{1}{z}, \ \gamma : [0, 2\pi] \to \mathbb{C} : t \mapsto r_0 e^{it}$.

$$\int_{\gamma} f = \int_{\gamma} \frac{1}{z} dz$$
$$= \int_{0}^{2\pi} \frac{\gamma'(t)}{\gamma(t)} dt$$
$$= \int_{0}^{2\pi} \frac{ir_{0}e^{it}}{r_{0}e^{it}} dt$$
$$= 2\pi i$$

(2) $f(z) = |z|^2$, $\gamma_1(t) = (1+i)t$, $t \in [0,1]$.

$$\int_{\gamma_1} f = \int_0^1 |(1+i)t|^2 (1+i) dt$$
$$= |1+i|^2 (1+i) \int_0^1 t^2 dt$$
$$= \frac{2}{3} (1+i)$$

 $\gamma_2(t) = t + it^2, t \in [0,1].$

$$\int_{\gamma_2} f = \int_0^1 (t^2 + t^4) (1 + 2ti) dt$$

= $\int_0^1 t^2 + t^4 dt + i \int_0^1 2t^3 + 2t^5 dt$
= $(\frac{1}{3} + \frac{1}{5}) + i(\frac{2}{4} + \frac{2}{6})$
= $\frac{8}{15} + i\frac{5}{6}$

Definition. If γ is a "sum of curves" $\gamma = \gamma_1 + \gamma_2 + \ldots + \gamma_n$ then

$$\int_{\gamma} f = \sum_{k=1}^n \int_{\gamma_k} f \; .$$

Theorem 2.1. (The Fundamental Theorem of Contour Integrals) Let $f: \mathcal{D} \to \mathbb{C}$ be continuous. Then the following are equivalent: (1) f has an anti-derivative on \mathcal{D} , i.e. $\exists F: \mathcal{D} \to \mathbb{C}$ such that F' = f; (2) $\int_{\gamma} f$ is dependent only on the endpoints of γ .

Proof. (1) \Rightarrow (2): Suppose F' = f. Choose $z_0, z_1 \in \mathcal{D}$ and $\gamma : [a,b] \rightarrow \mathcal{D}$ a path joining them.

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$
$$= \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt$$

By the Chain Rule,

$$\int_{\gamma} f = \int_{a}^{b} \frac{d}{dt} F(\gamma(t)) dt$$
$$= F(\gamma(b)) - F(\gamma(a))$$
$$= F(z_{1}) - f(z_{0})$$

and this depends only on z_0 and z_1 , not γ .

(2) \Rightarrow (1): Choose $z_0 \in \mathcal{D}$. Define $F(z) = \int_{z_0}^z f(w) dw$. Choose δ_0 such that $B_{\delta_0}(z) \subseteq \mathcal{D}$. Then for $\delta < \delta_0$, take $\gamma(t) = z + \delta t$, $t \in [0,1]$:

$$\frac{F(z+\delta)-F(z)}{\delta} = \frac{1}{\delta} \left(\int_{z_0}^z f + \int_z^{z+\delta} f - \int_{z_0}^z f \right)$$
$$= \frac{1}{\delta} \int_z^{z+\delta} f$$
$$= \frac{1}{\delta} \int_{\gamma} f(\gamma(t)) \gamma'(t) dt$$
$$= \frac{1}{\delta} \int_0^1 f(z+\delta t) \delta dt$$
$$= \int_0^1 f(z+\delta t) dt$$

Now use continuity to obtain

$$\lim_{\delta \to 0} \frac{F(z+\delta) - F(z)}{\delta} = \int_0^1 f(z) dt$$
$$= f(z)$$

Corollary 2.2. $f(z) = \frac{1}{z}$ does not have an anti-derivative on $\mathbb{C} \setminus \{0\}$.

Proposition 2.3. Let $f: \mathcal{D} \to \mathbb{C}$ be continuous. Then the following are equivalent: (1) $\int_{\beta} f = 0$ for every closed curve (contour) β ; (2) $\int_{\gamma} f$ depends only upon the endpoints of γ , γ a path.

Proof. (2) \Rightarrow (1): Let $\beta:[a,c] \rightarrow D$ be a closed curve. We require $\int_{\beta} f = 0$. Let $b \in (a,c)$. $\beta(b)$

Let $\beta_1 = \beta|_{[a,b]}$ and $\beta_2 = \beta|_{[b,c]}$ be the two resulting paths.

$$\int_{\beta} f = \int_{\beta_1} f + \int_{\beta_2} f$$

Let $-\beta_2$ be the curve β_2 traversed in the reverse direction: $-\beta_2:[0,1] \rightarrow \mathcal{D}$, $-\beta_2(t) = \beta_2(c+t(b-c)).$

$$\int_{-\beta_2} f = \int_0^1 f(\beta_2(c+t(b-c)))\beta'_2(c+t(b-c))(b-c)dt$$

= $\int_0^1 f(\beta_2(u))\beta'_2(u)\frac{du}{dt}dt$
= $\int_c^b f(\beta_2(u))\beta'_2(u)du$
= $-\int_b^c f(\beta_2(u))\beta'_2(u)du$
= $-\int_{\beta_2}^c f(\beta_2(u))\beta'_2(u)du$

Hence,

$$\int_{\beta} f = \int_{\beta_1} f + \int_{\beta_2} f$$
$$= \int_{\beta_1} f - \int_{-\beta_2} f$$
$$= 0$$

(1) \Rightarrow (2): Suppose γ_1, γ_2 are two paths in \mathcal{D} starting and finishing at the same points respectively.

Let β be the path γ_1 then $-\gamma_2$.

$$0 = \int_{\beta} f = \int_{\gamma_1} f + \int_{-\gamma_2} f = \int_{\gamma_1} f - \int_{\gamma_2} f.$$

Look at $f(z) = \frac{1}{z}$; this has no anti-derivative on $\mathbb{C} \setminus \{0\}$. Let $F(z) = \log z$; F is defined on $\mathbb{C} \setminus \{x \in \mathbb{R} \mid x \le 0\}$.

Exercise. Show $Log'(z) = \frac{1}{z}$.

The difference lies in the existence of holes as opposed to simple connectedness.

Ultimately, we will prove Cauchy's Theorem:

Cauchy's Theorem. If $f : \mathcal{U} \to \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then $\int_{Y} f = 0$ for every closed curve γ in \mathcal{U} .

Definition. Let $\gamma:[a,b] \to \mathbb{C}$ be a closed curve not passing through $0 \in \mathbb{C}$. Then the *winding number* of γ around 0 is the (integer) number of times that γ winds around 0 in the counter-clockwise direction.

$$w(\gamma,0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} dz \; .$$

Definition. Let $\gamma:[a,b] \to \mathbb{C}$ be a closed curve not passing through $z_0 \in \mathbb{C}$. Then the *winding number* of γ around z_0 is

$$w(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz \; .$$

We could write $\gamma(t) = z_0 + r(t)e^{i\theta(t)}$, where $\theta(t)$ is a continuous choice of argument. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_0} = \frac{1}{2\pi i} \int_{a}^{b} \frac{\left(r(t)e^{i\theta(t)}\right)'}{r(t)e^{i\theta(t)}} dt$$

$$= \frac{1}{2\pi i} \int_{a}^{b} \frac{r'(t)e^{i\theta(t)}}{r(t)e^{i\theta(t)}} + i\frac{r(t)\theta'(t)e^{i\theta(t)}}{r(t)e^{i\theta(t)}} dt$$

$$= \frac{1}{2\pi i} \int_{a}^{b} \frac{r'(t)}{r(t)} + i\theta'(t) dt$$

$$= \frac{1}{2\pi i} \left(\log r(b) - \log r(a) + i\theta(b) - i\theta(a)\right)$$

$$= \frac{1}{2\pi} \left(\theta(b) - \theta(a)\right)$$

$$= \text{change in angle}/2\pi$$

Definition. Let $\mathcal{U} \subseteq \mathbb{C}$ be connected. \mathcal{U} is *simply connected* if $w(\gamma, z_0) = 0$ for all closed curves γ in \mathcal{U} and $z_0 \notin \mathcal{U}$.

Theorem 2.4. Suppose $\mathcal{U} \subseteq \mathbb{C}$ is simply connected and γ is a triangular path in \mathcal{U} . If $f: \mathcal{U} \to \mathbb{C}$ is holomorphic then $\int_{\gamma} f = 0$.

Lemma 2.5. Let $f: \mathcal{D} \to \mathbb{C}$ be continuous and γ a path in \mathcal{D} . If $|f(\gamma(t))| \leq M$ then $\left| \int_{\gamma} f \right| \leq M\ell(\gamma)$, where $\ell(\gamma)$ is the length of the path γ .

Proof of 2.5.

$$\begin{split} \left| \int_{\gamma} f \right| &= \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \\ &\leq \int_{a}^{b} \left| f(\gamma(t)) \right| \gamma'(t) dt \\ &\leq M \int_{a}^{b} \left| \gamma'(t) \right| dt \\ &= M \ell(\gamma) \end{split}$$

Proof of 2.4. By taking midpoints of the edges we have four new paths:

 $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ $\int_{\gamma} f = \int_{\gamma_1} f + \int_{\gamma_2} f + \int_{\gamma_3} f + \int_{\gamma_4} f$

We show $\int_{\gamma} f = 0$ by showing $\left| \int_{\gamma} f \right| = 0$.

$$\left|\int_{\gamma} f\right| \leq \left|\int_{\gamma_1} f\right| + \left|\int_{\gamma_2} f\right| + \left|\int_{\gamma_3} f\right| + \left|\int_{\gamma_4} f\right|$$

Choose k such that $\left|\int_{\gamma_k} f\right| \ge \frac{1}{4} \left|\int_{\gamma} f\right|$. Label $\gamma_k = \gamma^1$. Note that $\ell(\gamma^1) = \frac{1}{2} \ell(\gamma)$. Continue the subdivision process to find a sequence of triangular paths (γ^n) such that

$$\left| \int_{\gamma^n} f \right| \ge \left(\frac{1}{4} \right)^n \left| \int_{\gamma} f \right|,$$

$$\ell \left(\gamma^n \right) = \left(\frac{1}{2} \right)^n \ell \left(\gamma \right).$$

Let T^n be the triangle bounded by γ^n . Since $\ell(\gamma^n) \to 0$ we have $\bigcap_{n=1}^{\infty} T^n = \{z_0\}$ by Baire's Theorem. Now since f is holomorphic (at z_0), given $\varepsilon > 0$, $\exists \delta > 0$ such that for $|z - z_0| < \delta$, $\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon$, i.e.

$$|f(z)-f(z_0)-f'(z_0)(z-z_0)| < \varepsilon |z-z_0|.$$

Since the T^n are shrinking to $\{z_0\}$, $\exists N \in \mathbb{N}$ such that $n > N \Rightarrow T^n \subseteq B_{\delta}(z_0)$. Hence, for n > N and $z \in \gamma^n$,

$$|f(z)-f(z_0)-f'(z_0)(z-z_0)| < \varepsilon \ell(\gamma^n).$$

Thus, by Lemma 2.5,

$$\begin{split} \left| \int_{\gamma^{n}} f(z) - f(z_{0}) - f'(z_{0})(z - z_{0}) dz \right| &\leq \varepsilon \ell(\gamma^{n}) \ell(\gamma^{n}) = \varepsilon \left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} \,. \end{split}$$

$$\begin{aligned} \text{Observe that} \quad \int_{\gamma^{n}} - f(z_{0}) - f'(z_{0})(z - z_{0}) dz &= 0 \,, \text{ so} \\ \left| \int_{\gamma^{n}} f \right| &\leq \varepsilon \left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} \\ \Rightarrow \qquad \left(\frac{1}{4}\right)^{n} \left| \int_{\gamma} f \right| &\leq \varepsilon \left(\frac{1}{4}\right)^{n} \ell(\gamma)^{2} \\ \Rightarrow \qquad \left| \int_{\gamma} f \right| &\leq \varepsilon \ell(\gamma)^{2} \\ \Rightarrow \qquad \left| \int_{\gamma} f \right| &\leq \varepsilon \ell(\gamma)^{2} \\ \Rightarrow \qquad \left| \int_{\gamma} f \right| &\leq \varepsilon \ell(\gamma)^{2} \end{split}$$

Corollary 2.6. Let $f: B_r(z_0) \to \mathbb{C}$ be holomorphic. Then f has an anti-derivative on $B_r(z_0)$.

Proof. Let γ_z be the radial path in $B_r(z_0)$ from z_0 to z and define $F(z) = \int_{\gamma_z} f$. We wish to show that F'(z) = f(z).

$$\frac{F(z+\delta)-F(z)}{\delta} = \frac{1}{\delta} \left(\int_{\gamma_{z+\delta}} f - \int_{\gamma_z} f \right)$$
$$= \frac{1}{\delta} \left(\int_{\gamma_{z+\delta}} f + \int_{-\gamma_z} f \right)$$
$$= \frac{1}{\delta} \left(\int_{\nabla} f + \int_{z\leftarrow z+\delta} f \right)$$
$$= \frac{1}{\delta} \int_{z\leftarrow z+\delta} f$$
$$= \frac{1}{\delta} \int_{0}^{1} f(z+t\delta) \delta dt$$
$$= \int_{0}^{1} f(z+t\delta) dt$$
$$\xrightarrow{\delta \to 0} f(z)$$

Corollary 2.7. If $f: \mathcal{U} \to \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then for every rectangular path γ in \mathcal{U} , $\int_{\gamma} f = 0$.

Proof.

Theorem 2.8. (Cauchy's Theorem) If $f : \mathcal{U} \to \mathbb{C}$ is holomorphic on a simply connected domain \mathcal{U} then $\int_{\mathbb{T}} f = 0$ for every closed curve γ in \mathcal{U} .

Proof. Let $\gamma : [a,b] \to \mathcal{U}$ be a closed curve. Cover $\gamma([a,b])$ with discs D_i ; choose a finite subcover D_0, \ldots, D_n such that $\gamma([t_i, t_{i+1}]) \subseteq D_i$, where

$$a = t_0 < t_1 < \ldots < t_{n-1} < t_n = b$$
.

In D_i , let β_i be a step path such that $\beta_i(t_i) = \gamma(t_i)$, $\beta_i(t_{i+1}) = \gamma(t_{i+1})$. By Proposition 2.3, $\int_{\gamma|_{[t_i,t_{i+1}]}} f = \int_{\beta_i} f$. Let β be the path given by the β_i in order; $\beta = \beta_0 + \ldots + \beta_n$. Then

$$\int_{\beta} f = \sum_{i=0}^{n} \int_{\beta_i} f \, .$$

We now show that β can be written as a sum of rectangular paths. To do this, extend all horizontal and vertical segments of β to lines, thus breaking the plane up into a finite number of rectangles R_j , some of which may be infinite. In the interior of each R_j choose a point z_j and let

$$v_j = w(\beta, z_j).$$

Collect all R_j with $v_j \neq 0$ and, after re-indexing, say these are R_1, \ldots, R_k . Let ∂R_j be the rectangular path in the boundary of R_j traversed in the anti-clockwise direction. Define the path $\tilde{\beta}$ by

$$\widetilde{\beta} = \sum_{j=1}^{k} v_j \partial R_j \; .$$

We claim that $\beta = \tilde{\beta}$. Suppose not – then there is some line segment L in $\tilde{\beta}$ and not in β . Suppose there are $\pm q$ copies of L ($L \subseteq \partial R_j$, say + q copies if L is traversed in the direction coinciding with the direction of ∂R_j , -q otherwise).

Now let $\alpha = \widetilde{\beta} - \beta - q \partial R_j$; the path α contains no copies of L. Hence,

$$w(\alpha, z_j) = w(\widetilde{\beta}, z_j) - w(\beta, z_j) - q = -q,$$

$$w(\alpha, z_{j'}) = w(\widetilde{\beta}, z_{j'}) - w(\beta, z_{j'}) = 0.$$

Since α contains no copies of L, $w(\alpha, z_j) = w(\alpha, z_{j'})$, so q = 0.

Now since \mathcal{U} is simply connected and $f: \mathcal{U} \to \mathbb{C}$ is holomorphic, $\int_{\partial R_j} f = 0$ for all j, so $\int_{\mathcal{V}} f = 0$.

Theorem 2.9. Let $f: \mathcal{D} \to \mathbb{C}$ be holomorphic and let γ be a closed curve in \mathcal{D} that does not wind around any points outside of \mathcal{D} . Then $\int_{\gamma} f = 0$.

Remark. This is a strengthening of Cauchy's Theorem.

Proof. First replace γ with a step path β as in Proposition 1.5 so that $\int_{\beta} f = \int_{\gamma} f$. Second, break up the plane into rectangles R_i and take $z_i \in R_i$. Collect the R_i for which $v_i = w(\beta, z_i) \neq 0$ and re-index as R_1, \dots, R_k . As before, $\beta = \sum_{i=1}^k v_i \partial R_i$. $R_i \subseteq \mathcal{D}$ by the assumption that γ (and hence β) does not wind around any points not in \mathcal{D} , so $\int_{\partial R_i} f = 0$ by Corollary 2.7. Hence $\int_{\gamma} f = \int_{\beta} f = 0$.

Corollary 2.10. If $f: \mathcal{U} \to \mathbb{C}$ is holomorphic and \mathcal{U} simply connected then f has an *anti-derivative on* \mathcal{U} .

Theorem 2.11. (Generalized Cauchy Theorem) Let $f : \mathcal{D} \to \mathbb{C}$ be holomorphic and let $\gamma = \gamma_1 + \ldots + \gamma_n$ be a sum of closed contours in \mathcal{D} with

$$w(\gamma, z) = w(\gamma_1, z) + \ldots + w(\gamma_n, z) = 0$$

for all $z \notin \mathcal{D}$. Then $\int_{\gamma} f = 0$.

Proof. Construct a new closed curve δ in \mathcal{D} by adding segments $\pm \sigma_i$, $1 \le i \le n$. Choose $w_0 \in \mathcal{D}$ and let w_i be the starting / finishing point of γ_i . Let σ_i be a path in \mathcal{D} from w_0 to w_i . Let $\delta = (\sigma_1 + \gamma_1 - \sigma_1) + ... + (\sigma_n + \gamma_n - \sigma_n)$, a closed curve.

For $z \notin \mathcal{D}$,

$$w(\delta, z) = \sum_{i=1}^{n} w(\sigma_i + \gamma_i - \sigma_i, z)$$
$$= \sum_{i=1}^{n} w(\gamma_i, z)$$
$$= 0$$

By Cauchy's Theorem,

$$0 = \int_{\delta} f = \sum_{i=1}^{n} \int_{\sigma_i + \gamma_i - \sigma_i} f = \int_{\gamma} f .$$

Theorem 2.12. (Cauchy's Integral Formula) Let $f : \mathcal{D} \to \mathbb{C}$ be holomorphic and $z_0 \in D$. Choose R > 0 such that $\overline{B_R(z_0)} \subseteq \mathcal{D}$ and let γ be a closed contour in $B_R(z_0)$ with $w(\gamma, z_0) = 1$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz \, .$$

Proof. $\frac{f(z)}{z-z_0}$ is holomorphic on $\mathcal{D} \setminus \{z_0\}$.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{z - z_0} dz = f(z_0),$$

by Theorem 2.11, where 0 < r < R.

Definition. A holomorphic function defined on all of \mathbb{C} is called *entire*.

Theorem 2.13. (Liouville's Theorem) Let $f : \mathbb{C} \to \mathbb{C}$ be a bounded entire function. Then *f* is constant.

Proof. Suppose f is entire and bounded; let M > 0 be such that $\forall z \in \mathbb{C}$, $|f(z)| \le M$. We show that $f(z) \equiv f(0)$ by Cauchy's Integral Formula:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(w)}{w-z} dw$$
$$f(0) = \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(w)}{w} dw$$

So,

$$f(z) - f(0) = \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(w)}{w-z} - \frac{f(w)}{w} dw$$
$$= \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{zf(w)}{(w-z)w} dw$$
$$|f(z) - f(0)| \le \frac{1}{2\pi} \frac{|z|M}{R(R-|z|)} \ell(\partial B_R(0))$$
$$= \frac{M|z|}{R-|z|}$$
$$\xrightarrow{R \to \infty} 0$$

So $f(z) \equiv f(0)$.

Theorem 2.14. (The Fundamental Theorem of Algebra) Let $p: \mathbb{C} \to \mathbb{C}$ be a nonconstant polynomial with coefficients in \mathbb{C} . Then $\exists z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

Proof. Suppose $\forall z \in \mathbb{C}$, $p(z) \neq 0$. Then $\frac{1}{p(z)}$ is entire. $|p(z)|_{|z|\to\infty} \infty$, so $\exists K > 0$ such that $|z| > K \Rightarrow \left|\frac{1}{p(z)}\right| < 1$. Moreover, since $\frac{1}{p}$ is continuous on $\overline{B_K(0)}$, $\exists M > 0$ such that $\left|\frac{1}{p(z)}\right| \leq M$ for $z \in \overline{B_K(0)}$. So $\frac{1}{p}$ is bounded on \mathbb{C} . Liouville's Theorem implies that $\frac{1}{p}$ is a constant, so p is a constant, a contradiction.

Theorem 2.15. (Gauss' Mean Value Theorem) Suppose $f: B_R(z_0) \to \mathbb{C}$ is holomorphic. Then for 0 < r < R,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$
.

Proof. This follows from Cauchy's Integral Formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{z - z_0} dz$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{it})}{re^{it}} ire^{it} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Theorem 2.16. (Maximum Modulus Principle) Let $f : \mathcal{D} \to \mathbb{C}$ be holomorphic and nonconstant on a connected domain \mathcal{D} . Then |f| cannot attain a maximum in (the interior of) \mathcal{D} .

Proof. Suppose not – suppose |f| attains a maximum at $z_0 \in \mathcal{D}$, i.e. $|f(z_0)| \ge |f(z)|$ for all $z \in \mathcal{D}$. Choose R > 0 such that $\overline{B_R(z_0)} \subseteq \mathcal{D}$. By Gauss' Mean Value Theorem, for all 0 < r < R,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

$$\Rightarrow \qquad |f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| dt \le |f(z_0)|$$

$$\Rightarrow \qquad |f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| dt$$

It follows that $\forall t \in [0, 2\pi], r \in (0, R), |f(z_0)| = |f(z_0 + re^{it})|.$

Hence, if |f| is maximized at $z_0 \exists B_r(z_0) \subseteq \mathcal{D}$ such that |f| is maximized on $B_r(z_0)$. Hence $\mathcal{D}' = \{z \in \mathcal{D} \mid |f(z)| = |f(z_0)|\}$ is an open set, but since |f| is continuous it is also closed. Hence, by connectedness, $\mathcal{D}' = \mathcal{D}$.

Theorem 2.17. Let $f: B_R(z_0) \to \mathbb{C}$ be holomorphic. Then f has a power series expansion on $B_R(z_0)$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for $z \in B_R(z_0)$, and furthermore

$$a_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 ,

where 0 < r < R.

Proof. (Sketch Proof.) We work from the formula $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw$. Expand $\frac{1}{w-z}$ in a power series centred at z_0 :

$$\frac{1}{w-z} = \sum_{n=0}^{\infty} \left(\frac{1}{w-z_0}\right)^n \left(z - z_0\right)^n$$

Substitute into the integrand. It then remains to show that we can integrate term-by-term.

With this theorem in hand we can describe the local behaviour of a holomorphic map. Consider $f(z) = z^k$, $k \ge 2$.

Consider $D = B_R(0)$; f maps D to $D' = B_{R'}(0)$. For any $w \in D' \setminus \{0\}$, $f^{-1}(w)$ consists of k distinct points in D. Moreover, there is a neighbourhood U_w of w such that $f^{-1}(U_w) = \coprod_{i=1}^k U_i$, where the U_i are disjoint neighbourhoods of the k pre-images of w, and $f|_{U_i} : U_i \to U_w$ is a homeomorphism. We say that $f(z) = z^k$ is a k-fold branched covering, branched over $0 \in D$.

In fact, any holomorphic map is a *k* -fold branched covering:

$$f(z) - f(z_0) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$$

If f is non-constant $\exists n \in \mathbb{N}$ such that $a_n \neq 0$; let k be the smallest such n.

$$f(z) - f(z_0) = a_k (z - z_0)^k + a_{k+1} (z - z_0)^{k+1} + \dots$$

= $(z - z_0)^k (a_k + a_{k+1} (z - z_0) + \dots)$
= $(z - z_0)^k g(z)$

Since $g(z_0) \neq 0$, $\exists r > 0$ such that $g(z) \neq 0$ for all $z \in B_r(z_0)$. Now by Question 12 on Question Sheet 1 there is a holomorphic $h: B_r(z_0) \to \mathbb{C}$ such that $h(z)^k = g(z)$, so

$$f(z) - f(z_0) = (\underbrace{(z - z_0)h(z)}_{H(z)})^k$$

Observe that $H'(z_0) = h(z_0) \neq 0$.

By the Inverse Function Theorem, H is invertible, i.e. is a change of coordinates. So $f(z) - f(z_0)$ is a k-fold branched convering.

Theorem 2.18. (Open Mapping Theorem) If $f : \mathcal{D} \to \mathbb{C}$ is a non-constant holomorphic map then f is open, i.e. $\forall z_0 \in \mathcal{D}$ there is an open neighbourhood U of $f(z_0)$ such that $U \subseteq f(\mathcal{D})$.

Proof. This follows from the above local model of holomorphic maps.

Theorem 2.19. The zeroes of a non-constant holomorphic function $f: \mathcal{D} \to \mathbb{C}$ are isolated, i.e. if $f(z_0) = 0 \exists B_R(z_0) \subseteq \mathcal{D}$ such that $f(z) \neq 0$ for $z \in B_R(z_0) \setminus \{z_0\}$.

Proof. By the local behaviour of f we know that $\exists B_R(z_0) \subseteq \mathcal{D}$ such that

$$f|_{B_R(z_0)}: B_R(z_0) \to f(B_R(z_0))$$

is a k-fold branched covering branched over z_0 , so z_0 is the only zero of f in the disc.

Theorem 2.20. Let $f,g: \mathcal{D} \to \mathbb{C}$ be holomorphic. Suppose $f(z_n) = g(z_n)$ for a convergent sequence of distinct points in $\mathcal{D}, z_n \to \hat{z} \in \mathcal{D}$. Then f = g on \mathcal{D} .

Proof. Let h = f - g. *h* has a non-isolated zero at $\hat{z} \in D$, and so h = 0 on D. Hence f = g on D

Example. $\sin^2 z + \cos^2 z = 1$ for $z \in \mathbb{R}$, so $\sin^2 z + \cos^2 z = 1$ for $z \in \mathbb{C}$.

3. POLES, RESIDUES AND INTEGRALS

Definition. If $f: B_r(z_0) \setminus \{z_0\} \to \mathbb{C}$ is holomorphic then f is said to have an *isolated* singularity at z_0 .

Examples.

$$f(z) = \frac{1}{z} \sin z$$
$$g(z) = \frac{1}{z}$$
$$h(z) = e^{-1/z}$$

Theorem 3.1. (Laurent's Theorem) Suppose f is holomorphic on the open annulus $A_{R_1,R_2}(z_0) = \{z \in \mathbb{C} \mid R_1 < |z - z_0| < R_2\}$, where $R_2 > R_1 \ge 0$. Then f has a Laurent series expansion on $\mathcal{A} = A_{R_1,R_2}(z_0)$:

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$$

with

$$a_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw,$$

$$R_1 < r < R_2.$$

 $f(z) = \frac{1}{2\pi i} \int \frac{f(w)}{w} dw$

Proof. (Sketch proof.) Use Cauchy's Integral Formula:

$$C_{1}(t) = z_{0} + R_{1}'e^{it}, t \in [0, 2\pi]$$

$$C_{2}(t) = z_{0} + R_{2}'e^{it}, t \in [0, 2\pi]$$

Observe that $w(C_2 - C_1 - \partial B_{\varepsilon}(z), z') = 0$ for all $z' \notin A \setminus \{z\}$. By the Generalized Cauchy Theorem,

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{\varepsilon}(z)} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \left(\int_{C_2} \frac{f(w)}{w-z} dw - \int_{C_1} \frac{f(w)}{w-z} dw \right)$$

For $\int_{C_2} \frac{f(w)}{w-z} dw$ expand $\frac{1}{w-z}$ as a power series centered about z_0 :

$$\frac{1}{w-z} = \sum_{n=0}^{\infty} \frac{1}{(w-z_0)^{n+1}} \left(z - z_0\right)^n$$

since $\left|\frac{z-z_0}{w-z_0}\right| < 1$. For $\int_{C_1} \frac{f(w)}{w-z} dw$ expand:

$$\frac{1}{w-z} = \sum_{n=0}^{\infty} \left(w - Z_0 \right)^n \frac{1}{(z-z_0)^{n+1}}$$

since $\left|\frac{z-z_0}{w-z_0}\right| > 1$. Integrate term-by-term to obtain the claimed Laurent series expansion.

Examples. (1) $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ for |z| < 1. Hence,

$$\frac{1/z}{1/z-1} = -\frac{1}{z} \frac{1}{1-1/z} = -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \text{ for } |z| > 1.$$

(2)

$$\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right)$$
$$= 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

(3) $\frac{1}{z^k}$ is its own Laurent series for $k \ge 1$.

(4) For |z| > 0,

$$e^{-1/z} = 1 + \left(-\frac{1}{z}\right) + \left(-\frac{1}{z}\right)^2 / 2! + \left(-\frac{1}{z}\right)^3 / 3! + \dots$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{1}{z}\right)^n$$

Definition. A holomorphic function $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ is said to have a *removable* singularity at z_0 if f can be extended to a holomorphic function on $B_R(z_0)$.

Proposition 3.2. Let $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ be holomorphic. Then the singularity at z_0 is removable if and only if f is bounded on $B_r(z_0) \setminus \{z_0\}$ for some $0 < r \le R$.

Proof. (\Rightarrow) Trivial.

(\Leftarrow) Assume |f| is bounded by M on $B_r(z_0) \setminus \{z_0\}$. We will show that in the Laurent expansion $f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$, $a_n = 0$ for n < 0.

$$a_{n} = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(z)}{(z-z_{0})^{n+1}} dz$$
$$= \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} f(z) (z-z_{0})^{-n-1} dz$$

Hence, by the Estimation Lemma,

$$\begin{aligned} |a_n| &\leq \frac{1}{2\pi} M r^{-n-1} 2\pi r \\ &= M r^{-n} \end{aligned}$$

 $Mr^{-n} \xrightarrow[r \to 0]{} 0$ so $a_n = 0$ for all negative *n*. So the Laurent series is, in fact, a power series,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for $z \in B_R(z_0) \setminus \{z_0\}$. By defining $f(z_0) = a_0$ we have a holomorphic extension of f to $B_R(z_0)$.

Proposition 3.3. Let $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ be holomorphic. Suppose $\lim_{z \to z_0} f(z) = \infty$. Then $\exists N \in \mathbb{N}$ such that $n > N \Longrightarrow a_{-n} = 0$.

We say that f has a pole of order N at z_0 .

Proof. $g(z) = \frac{1}{f(z)}$ is holomorphic on $B_{R'}(z_0) \setminus \{z_0\}$ for some $0 < R' \le R$. Observe that $\lim_{z \to z_0} g(z) = 0$, hence g is bounded on $B_{R'}(z_0) \setminus \{z_0\}$, $0 < R'' \le R'$. So

$$g(z) = (z - z_0)^N (b_N + b_{N+1}(z - z_0) + b_{N+2}(z - z_0)^2 + \dots), \ b_N \neq 0$$

Take $h(z) = b_N + b_{N+1}(z - z_0) + b_{N+2}(z - z_0)^2 + \dots$, so

$$g(z) = (z - z_0)^N h(z).$$

Moreover, $h(z) \neq 0$ for $z \in B_{R'}(z_0)$, so

$$f(z) = \frac{1}{(z-z_0)^N} \frac{1}{h(z)}$$
$$= \frac{1}{(z-z_0)^N} \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

Note that $a_0 \neq 0$.

Corollary 3.4. g has a pole of order N at z_0 if and only if $\frac{1}{g}$ has a zero of order N at z_0 .

Definition. If f has an isolated singularity at z_0 that is neither removable nor a pole then f is said to have an *essential singularity* at z_0 .

Corollary 3.5. *f* has an essential singularity at z_0 if and only if in the Laurent expansion of f about z_0 there are infinitely many $n \in \mathbb{N}$ such that $a_{-n} \neq 0$.

Proposition 3.6. Suppose $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ has an essential singularity at z_0 . Then in any neighbourhood of z_0 , f takes values arbitrarily close to any $\alpha \in \mathbb{C}$.

Theorem 3.7. (Picard's Theorem) Let f have an essential singularity at $z_0 \in \mathbb{C}$. Then on any small neighbourhood of z_0 , f takes every value in \mathbb{C} , with possibly one exception.

Although essential singularities are wildly behaved, in some sense poles are no worse than zeroes.

Idea. A holomorphic function $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ whose singularity at z_0 is not essential can be extended to a holomorphic function $f: B_R(z_0) \to \mathbb{C} \cup \{\infty\}$.

We call $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ the *Riemann sphere*. Topologically, $\hat{\mathbb{C}}$ is the usual twodimensional sphere, the one-point compactification of \mathbb{R}^2 . Complex analytically we can represent it as the unit sphere in \mathbb{R}^3 , $S^2 = \{(u, v, w) \in \mathbb{R}^3 \mid u^2 + v^2 + w^2 = 1\}$, whose points are identified with $\hat{\mathbb{C}}$ via stereographic projection $\pi : S^2 \to \hat{\mathbb{C}}$.

For $(u,v,w) \in S^2 \setminus \{(0,0,1)\}, \ \pi(u,v,w) = \text{the point of intersection of the line through} (0,0,1) \text{ and } (u,v,w) \text{ with the } (u,v) \text{-plane. Define } \pi(0,0,1) = \infty.$

The line through (0,0,1) and (u,v,w) is parameterized by t(0,0,1)+(1-t)(u,v,w). The value of t corresponding to $\pi(u,v,w)$ is where t+(1-t)w=0, so $t=\frac{w}{w-1}$. Hence,

$$\pi(u, v, w) = \frac{w}{w-1}(0, 0, 1) + \frac{1}{1-w}(u, v, w)$$
$$= \left(\frac{u}{1-w}, \frac{v}{1-w}, 0\right)$$
$$= \frac{u}{1-w} + i\frac{v}{1-w}$$

Consider $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, f(z) = \frac{1}{z}$. This can be considered as a map $\hat{f}: S^2 \to S^2$, where $\hat{f} = \pi^{-1} \circ f \circ \pi$. z is a coordinate on $S^2 \setminus \{(0,0,1)\}$ and $\frac{1}{z}$ is a coordinate on $S^2 \setminus \{(0,0,-1)\}$. Hence, S^2 (or $\hat{\mathbb{C}}$) can be considered as two copies of \mathbb{C} with variables z and w respectively, under the identification $\frac{\mathbb{C} \amalg \mathbb{C}}{\tilde{z}}$, where $z \sim w \Leftrightarrow z, w \neq 0, z = \frac{1}{w}$.

Suppose f has a pole at z_0 :

$$B_R(z_0) \xrightarrow{f} \hat{\mathbb{C}} \xrightarrow{z \mapsto \frac{1}{z}} \hat{\mathbb{C}}$$

$$z \mapsto \frac{1}{f(z)}, \text{ holomorphic near } z_0$$

We can consider the behaviour of a holomorphic function near ∞ :

$$f: \left\{ z \in \mathbb{C} \mid |z| > R \right\} \to \mathbb{C}$$
$$g(w) = f\left(\frac{1}{w}\right) \text{ on } \left\{ w \in \mathbb{C} \mid 0 < |w| < \frac{1}{R} \right\}$$

We will say that f has a zero / removable singularity / pole / essential singularity at ∞ if g has a zero / removable singularity / pole / essential singularity at 0.

Examples. (1) $f(z) = \frac{1}{1-z}$; $g(w) = f(\frac{1}{w}) = \frac{1}{1-1/w} = \frac{w}{w-1}$. f has a zero of order 1 at ∞ . (2) $f(z) = z^k + 1$; $g(w) = f(\frac{1}{w}) = \frac{1}{w^k} + 1$; $k \in \mathbb{N}$. f has a pole of order k at ∞ . (3) $f(z) = e^z$; $g(w) = e^{1/w}$. f has an essential singularity at ∞ .

Definition. Let $\mathcal{D} \subseteq \hat{\mathbb{C}}$ be a domain. A function $f : \mathcal{D} \to \hat{\mathbb{C}}$ that is holomorphic except at a finite number of poles is called *meromorphic*.

Theorem 3.8. A meromorphic function $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a rational function, i.e. a quotient of two polynomials, $f(z) = \frac{p(z)}{q(z)}$, $p, q \in \mathbb{C}[z]$.

Proof. Let $\{z_i\}_{i=1}^k$ be the set of poles of f in \mathbb{C} ; say the order of the pole at z_i in n_i .

$$f(z)\prod_{i=1}^{k}(z-z_i)^{n_i}=g(z)$$

g is entire; we require that g be a polynomial.

Now, at ∞ , since f has at worst a pole at ∞ , say of order m:

$$f\left(\frac{1}{w}\right)\prod_{i=1}^{k}\left(\frac{1}{w}-z_{i}\right)^{n_{i}}=g\left(\frac{1}{w}\right) \text{ near } w=0$$

 $g(\frac{1}{w})$ has at worst a pole of order $n_1 + \ldots + n_k + m$ at w = 0.

$$g(z) = \sum_{n=0}^{\infty} a_n z^n, \ z \in \mathbb{C}$$
$$g(w) = \sum_{n=0}^{\infty} a_n (\frac{1}{w})^n$$

 $a_n = 0$ for $n > n_1 + \ldots + n_k + m$, so g is a polynomial.

$$f(z) = \frac{g(z)}{\prod_{i=1}^{k} (z-z_i)^{n_i}}$$

In the next section we consider functions $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$f(z) = \frac{\alpha z + \beta}{\gamma z + \delta},$$

the linear fractional transformations.

Definition. If $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$ has an isolated singularity at z_0 we define the *residue* of f at z_0 to be

$$\operatorname{Res}(f, z_0) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} f(z) dz = a_{-1}, \ 0 < r < R.$$

Theorem 3.9. (Cauchy's Residue Theorem) Let $f: \mathcal{D} \to \mathbb{C}$ be holomorphic except possibly at isolated singularities. Let γ be a simple (i.e. non-self-intersecting) closed curve in \mathcal{D} such that all points inside γ are contained in \mathcal{D} and $w(\gamma, z)=1$ for all z inside γ . Then

$$\int_{\gamma} f = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_j),$$

where z_1, \ldots, z_k are the singularities of f inside γ .

In order to make sense of the term "inside γ " we need the Jordan Curve Theorem, which we shall not prove:

Theorem 3.10. (Jordan Curve Theorem) If γ is a simple closed curve in \mathbb{C} then $\mathbb{C} \setminus \gamma$ consists of two disjoint domains: a bounded domain (the "inside of γ ") and an unbounded domain (the "outside of γ "), and the curve γ is the boundary of each of these two domains.

Proof of 3.9. Let Γ denote the inside of γ . Choose small circular paths $\gamma_1, \ldots, \gamma_k$ centred on z_1, \ldots, z_k respectively such that $\gamma_i \subseteq \Gamma$ and $w(\gamma_i, z_j) = \delta_{ij}$. We claim

$$\int_{\gamma} f = \int_{\gamma_1} f + \ldots + \int_{\gamma_k} f \, .$$

This follows from the Generalized Cauchy Theorem, which guarantees that

$$\int_{\gamma} f + \int_{-\gamma_1} f + \ldots + \int_{-\gamma_k} f = 0.$$

for if $\mathcal{D}' =$ neighbourhood of $\gamma \cup$ neighbourhood of $\Gamma \setminus \{z_1, \ldots, z_k\}$ and $z \notin \mathcal{D}'$,

$$w(\gamma - \gamma_1 - \ldots - \gamma_k, z) = w(\gamma, z) - (w(\gamma_1, z) + \ldots + w(\gamma_k, z)) = 0.$$

Hence,

$$\int_{\gamma} f = \sum_{j=1}^{k} \int_{\gamma_j} f$$
$$= 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_j)$$

Examples. Let $f: B_R(z_0) \setminus \{z_0\} \to \mathbb{C}$. (1) A simple pole (a pole of order 1):

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Write $f(z) = \frac{g(z)}{h(z)}$; at a singularity / pole, $g(z) \neq 0$, h(z) = 0. Look at $h'(z_0)$; if $h'(z_0) \neq 0$ then f has a simple pole at z_0 .

$$\lim_{z \to z_0} (z - z_0) f(z) = a_{-1}$$

If $f = \frac{g}{h}$ then

$$\lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} \frac{(z - z_0)g(z)}{h(z)} = \frac{g(z_0)}{h'(z_0)}$$

by l'Hôpital's Rule.

(2) A pole of order k:

$$f(z) = \frac{a_{-k}}{(z-z_0)^k} + \dots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

Multiply through by $(z - z_0)^k$:

$$(z-z_0)^k f(z) = a_{-k} + a_{-(k-1)}(z-z_0) + \dots + a_{-1}(z-z_0)^{k-1} + a_0(z-z_0)^k + \dots$$

Differentiate k-1 times (using Leibniz's Rule) and evaluate at $z = z_0$:

$$\frac{\frac{d^{k-1}}{dz^{k-1}} (z - z_0)^k f(z) = (k - 1)! a_{-1} }{a_{-1} = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} (z - z_0)^k f(z) \Big|_{z=z_0} }$$

So, for example,

$$\operatorname{Res}\left(\frac{(z+1)^{2}}{(z-1)^{2}},1\right) = \frac{d}{dz}(z+1)^{2}\Big|_{z=1}$$
$$= 2(z+1)\Big|_{z=1}$$
$$= 4$$

(3) If $f(z) = \sin(\frac{1}{z}) = \frac{1}{z} - \frac{1}{3!}(\frac{1}{z})^3 + \frac{1}{5!}(\frac{1}{z})^5 - \dots$ then we see that $\operatorname{Res}(\sin\frac{1}{z}, 0) = 1$.

We can evaluate real integrals by means of residues.

Examples. (1)
$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$$
.

Consider $f(z) = \frac{z^2}{1+z^4}$. Let γ_R be the straight path [-R, R] and the upper half of $\partial B_R(0)$. By the Residue Theorem, if $p_1 = e^{\pi i/4}$, $p_2 = e^{3\pi i/4}$

$$\int_{\gamma_R} f(z) dz = 2\pi i \left(\operatorname{Res}(f, p_1) + \operatorname{Res}(f, p_2) \right)$$

Write $f(z) = \frac{p(z)}{q(z)}$: $\operatorname{Res}(f, p_j) = \frac{p(p_j)}{q'(p_j)} = \frac{p_j^2}{4p_j^3} = \frac{1}{4p_j}$. So

$$\int_{\gamma_R} f(z) dz = \frac{2\pi i}{4} \left(e^{-\pi i/4} + e^{-3\pi i/4} \right)$$
$$= \frac{\pi}{\sqrt{2}}$$

We now wish to show that the integral over the semicircular portion C_R of the path goes to zero as $R \to \infty$:

$$\left| \int_{C_R} f \right| = \left| \int_0^{\pi} f\left(Re^{it}\right) i Re^{it} dt \right|$$
$$= \int_0^{\pi} \left| f\left(Re^{it}\right) R dt \right|$$

Since $\left|\frac{z^2}{1+z^4}\right| \le \frac{|z|^2}{|z|^4-1} = \frac{R^2}{R^4-1}$ on C_R ,

$$\int_0^{\pi} \left| f\left(Re^{it} \right) \right| R \, dt \le \tfrac{R^3}{R^4 - 1} \pi \underset{R \to \infty}{\longrightarrow} 0$$

So

$$\frac{\pi}{\sqrt{2}} = \lim_{R \to \infty} \int_{\gamma_R} f = \int_{-\infty}^{+\infty} \frac{x^2}{1 + x^4} dx.$$

$$(2) \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Consider the curve $\gamma_{\delta,R}$: the straight path $[-R, -\delta]$, the upper half of $\partial B_{\delta}(0)$, the straight path $[\delta, R]$, the upper half of $\partial B_R(0)$.

By Cauchy's Residue Theorem $\int_{\gamma_{\delta,R}} \frac{e^{z}}{z} dz = 0$. First,

$$\int_{-R}^{-\delta} \frac{e^{ix}}{x} dx + \int_{\delta}^{R} \frac{e^{ix}}{x} dx = \int_{R}^{\delta} \frac{e^{-iu}}{-u} (-du) + \int_{\delta}^{R} \frac{e^{ix}}{x} dx$$
$$= \int_{\delta}^{R} \frac{e^{ix} - e^{-ix}}{x} dx$$
$$= 2i \int_{\delta}^{R} \frac{\sin x}{x} dx$$
$$\xrightarrow[\delta \to 0]{} \int_{0}^{\infty} \frac{\sin x}{x} dx$$

Secondly, $\int_{C_R} \frac{e^{tz}}{z} dz \xrightarrow[R \to \infty]{} 0$:

$$\left| \int_{C_R} \frac{e^{iz}}{z} dz \right| \leq \int_0^\pi \left| \frac{e^{iRe^{it}}}{Re^{it}} iRe^{it} \right| dt$$
$$= \int_0^\pi \left| ie^{iRe^{it}} \right| dt$$
$$= \int_0^\pi \left| e^{iR\cos t - R\sin t} \right| dt$$
$$= \int_0^\pi e^{-R\sin t} dt$$
$$= 2\int_0^{\pi/2} e^{-R\sin t} dt$$

Observe that $\sin t \ge \frac{2}{\pi}t$, so $-R\sin t \le -R\frac{2}{\pi}t$:

$$\left| \int_{C_R} \frac{e^{iz}}{z} dz \right| \leq 2 \int_0^{\pi/2} e^{-2Rt/\pi} dt$$
$$= 2\left(-\frac{\pi}{2R}\right) e^{-2Rt/\pi} \Big|_0^{\pi/2}$$
$$= \frac{\pi}{R} \left(1 - e^{-R}\right)$$
$$\xrightarrow{R \to \infty} 0$$

Thirdly,

$$\int_{C_{\delta}} \frac{e^{iz}}{z} dz = -\int_{0}^{\pi} \frac{e^{i\delta e^{it}}}{\delta e^{it}} i\delta e^{it} dt$$
$$= -i\int_{0}^{\pi} e^{i\delta e^{it}} dt$$
$$\xrightarrow{\delta \to 0} -i\int_{0}^{\pi} 1 dt$$
$$= -i\pi$$

So

$$0 = \lim_{\substack{R \to \infty \\ \delta \to \infty}} \int_{\gamma_{\delta,R}} \frac{e^{z}}{z} dz = 2i \int_0^\infty \frac{\sin x}{x} dx - i\pi$$

So $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$, as claimed. (3) $\int_0^{2\pi} \frac{1}{a + \cos \theta} d\theta$ for a > 1. If $z = e^{i\theta}$, $dz = ie^{i\theta} d\theta = iz d\theta$ and $\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$. $\int_{S^1} \frac{1}{a + \frac{1}{2} \left(z + z^{-1} \right)} \frac{1}{iz} dz = \frac{2}{i} \int_{S^1} \frac{1}{z^2 + 2az + 1} dz$

The zeroes of $z^2 + 2az + 1$ are $z = -a \pm \sqrt{a^2 + 1}$. $\alpha = -a + \sqrt{a^2 + 1}$ is inside S^1 and $\beta = -a - \sqrt{a^2 - 1}$ is outside S^1 .

$$\operatorname{Res}\left(\frac{1}{z^{2}+2az+1},\alpha\right) = \operatorname{Res}\left(\frac{1}{(z-\alpha)(z-\beta)},\alpha\right)$$
$$= \frac{1}{\alpha-\beta}$$
$$= \frac{1}{2\sqrt{\alpha^{2}-1}}$$

So $\int_{0}^{2\pi} \frac{1}{a + \cos\theta} d\theta = \frac{2}{i} 2\pi i \operatorname{Res}\left(\frac{1}{z^{2} + 2az + 1}, \alpha\right) = \frac{2\pi}{\sqrt{a^{2} - 1}}$. (4) $\int_{0}^{\infty} \frac{\log x}{1 + x^{2}} dx = 0$.

Take a branch of log such that the polar angle of z is in the interval $\theta \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$. For $z = re^{i\theta}$,

$$\operatorname{Re}\log z = \log r$$
$$\operatorname{Im}\log z = \theta$$

This is possible for $z \in \mathbb{C} \setminus \{iy \mid y \le 0\}$. Take $f(z) = \frac{\log z}{1+z^2}$ and consider $\int_{\gamma_{R,\delta}} f(z) dz$.

$$\int_{-R \to -\delta} f(z) dz = \int_{-R}^{-\delta} \frac{\log|x| + \pi i}{1 + x^2} dx$$
$$\int_{\delta \to R} f(z) dz = \int_{\delta}^{R} \frac{\log x}{1 + x^2} dx$$

Hence,

$$\int_{\substack{-R \to -\delta \\ \delta \to R}} f(z) dz = 2 \int_{\delta}^{R} \frac{\log x}{1 + x^2} dx + \pi i \int_{\delta}^{R} \frac{1}{1 + x^2} dx$$
$$\xrightarrow{\delta \to 0}_{R \to \infty} 2 \int_{0}^{\infty} \frac{\log x}{1 + x^2} dx + \pi i \int_{0}^{\infty} \frac{1}{1 + x^2} dx$$
$$= 2 \int_{0}^{\infty} \frac{\log x}{1 + x^2} dx + \pi i \left(\frac{\pi}{2}\right)$$

We can show that $\int_{C_{\delta}} f(z) dz \xrightarrow[\delta \to 0]{} 0$ and $\int_{C_{R}} f(z) dz \xrightarrow[R \to \infty]{} 0$. Therefore, by Cauchy's Residue Theorem,

$$\int_{\gamma_{\delta,R}} f(z) dz = 2\pi i \operatorname{Res}(f,i)$$
$$= 2\pi i \lim_{z \to i} \frac{(z-i)\log z}{1+z^2}$$
$$= \frac{\log i}{i+i} 2\pi i$$
$$= \frac{\pi^2 i}{2}$$
$$\underset{\substack{\delta \to 0\\R \to \infty}}{\longrightarrow} 2 \int_0^\infty \frac{\log x}{1+x^2} dx + \frac{\pi^2 i}{2}$$

So $\int_0^\infty \frac{\log x}{1+x^2} dx = 0$, as required.

We can also use the Residue Theorem to find sums of series.

Example. $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Find a function with zeroes at integer points, e.g. $\sin \pi z$; $\frac{1}{\sin \pi z}$ has a simple pole at each $n \in \mathbb{Z}$.

$$\operatorname{Res}\left(\frac{1}{\sin \pi z}, n\right) = \lim_{z \to n} \frac{z - n}{\sin \pi z} = \frac{1}{\pi \cos \pi n} = \frac{(-1)^n}{\pi}$$

Consider $\frac{\cos \pi z}{\sin \pi z}$; this has residue $\frac{1}{\pi}$ at z = n. Take a holomorphic function f.

$$\operatorname{Res}(f(z)_{\frac{\cos \pi z}{\sin \pi z}}, n) = \frac{f(z)}{\pi}$$

$$\begin{aligned} \left| \frac{\cos \pi z}{\sin \pi z} \right| &= \left| \frac{\cos \pi \left(x + iy \right)}{\sin \pi \left(x + iy \right)} \right| \\ &= \left| \frac{e^{i\pi x - \pi y} + e^{-i\pi x + \pi y}}{e^{i\pi x - \pi y} - e^{-i\pi x + \pi y}} \right| \\ &= \left| \frac{\cos \pi \left(e^{\pi y} + e^{-\pi y} \right)^{-1} \sin \pi x \left(e^{\pi y} - e^{-\pi y} \right)}{-\cos \pi x \left(e^{\pi y} - e^{-\pi y} \right)^{+1} \sin \pi x \left(e^{\pi y} + e^{-\pi y} \right)} \right| \\ &= \sqrt{\frac{e^{2\pi y} + e^{-2\pi y} + 2\cos 2\pi x}{e^{2\pi y} + e^{-2\pi y} - 2\cos 2\pi x}} \end{aligned}$$

On vertical sides $\left|\frac{\cos \pi z}{\sin \pi z}\right| \le \sqrt{\frac{e^{2\pi y} + e^{-2\pi y} + 2}{e^{2\pi y} + e^{-2\pi y} - 2}} \le M$ for $y \ge y_0 > 0$. If $\left|f(z)\right| \le \frac{M'}{|z|^2}$ for some M' then

$$\left| \int_{\gamma_{N,y_0}} f(z) \cot \pi z \, dz \right| \le M \, \frac{M'}{(N+1/2)^2 + y_0^2} \, 2 \big(2N + 1 + y_0 \big) \underset{N \to \infty}{\longrightarrow} \, 0 \text{ with } y_0 = N + \frac{1}{2} \, .$$

For $f(z) = z^{-2}$, since

$$\operatorname{Res}(z^{-2} \cot \pi z, n) = \begin{cases} \frac{1}{\pi n^2} & n \neq 0\\ -\frac{\pi}{3} & n = 0 \end{cases}$$

we have that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, as claimed.

4. CONFORMAL MAPS

Recall. $F : \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry if $\forall x, y \in \mathbb{R}^2$, ||F(x) - F(y)|| = ||x - y||. The isometries of \mathbb{R}^2 are the rigid motions: rotations about points, reflections about lines, translations along lines, and composites of these.

We can relax the isometry condition and require only that maps preserve angles – what does this mean?

Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be differentiable.

Let $\gamma_1, \gamma_2: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ be two small paths about $z_0 \in \mathbb{R}^2$, so $\gamma_1(0) = \gamma_2(0) = z_0$. The directed angle θ between γ_1 and γ_2 is given by $\cos(\theta) = \gamma'_1(0) \cdot \gamma'_2(0)$. Similarly,

$$\cos(\phi) = (F \circ \gamma_1)'(0) \cdot (F \circ \gamma_2)'(0)$$
$$= (dF \circ \gamma_1')(0) \cdot (dF \circ \gamma_2')(0)$$

F preserves angles at z_0 if given paths γ_1, γ_2 through z_0 the angle from $F \circ \gamma_1$ to $F \circ \gamma_2$ equals the angle from γ_1 to γ_2 . In the diagrams above this corresponds to having $\theta = \phi$.

Definition. $F : \mathcal{U} \subseteq \mathbb{R}^2 \to \mathcal{V} \subseteq \mathbb{R}^2$ is *conformal* if it preserves angles at all points of \mathcal{U} .

Obviously, any isometry of \mathbb{R}^2 is also a conformal map (if one agrees to ignore the orientation-reversing properties of reflections).

Theorem 4.1. Let $F: \mathcal{U} \subseteq \mathbb{R}^2 \to \mathcal{V} \subseteq \mathbb{R}^2$, F = (u, v), be differentiable with continuous derivatives. Then F is conformal if and only if f = u + iv is holomorphic with $f'(z) \neq 0$ for all points $z \in \mathcal{U}$.

Proof. (\Leftarrow) Suppose f is holomorphic at $z_0 \in \mathcal{U}$ and that $f'(z_0) \neq 0$. If $\gamma : (-\varepsilon, \varepsilon) \to \mathcal{U}$ is a path through z_0 the tangent vector to $f \circ \gamma$ at t = 0 is

$$\frac{d}{dt} f(\gamma(t))\Big|_{t=0} = f'(\gamma(0))\gamma'(0) = f'(z_0)\gamma'(0)$$

which is simply $\gamma'(0)$ expanded by $|f'(z_0)|$ and rotated by $\arg f'(z_0)$.

 (\Rightarrow) Suppose F is conformal;

$$dF = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Consider

$$\mathbf{v}_{\theta} = dF \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
$$= (\cos \theta) \begin{pmatrix} u_x \\ v_x \end{pmatrix} + (\sin \theta) \begin{pmatrix} u_y \\ v_y \end{pmatrix}$$
$$= (\cos \theta) \mathbf{v}_0 + (\sin \theta) \mathbf{v}_{\pi/2}$$

Since F is conformal, the angle from \mathbf{v}_0 to \mathbf{v}_{θ} is θ .

$$\Rightarrow \qquad \cos\theta = \frac{\mathbf{v}_0 \cdot \mathbf{v}_\theta}{\|\mathbf{v}_0\| \|\mathbf{v}_\theta\|} = \frac{(\cos\theta) \|\mathbf{v}_0\|^2}{\|\mathbf{v}_0\| \|\mathbf{v}_\theta\|} = (\cos\theta) \frac{\|\mathbf{v}_0\|}{\|\mathbf{v}_\theta\|}$$
$$\Rightarrow \qquad \|\mathbf{v}_\theta\| = \|\mathbf{v}_0\| \quad \forall\theta \neq \frac{\pi}{2}, \frac{3\pi}{2}$$

Also, the angle from \mathbf{v}_{θ} to $\mathbf{v}_{\pi/2}$ is $\frac{\pi}{2} - \theta$.

$$\Rightarrow \qquad \sin \theta = \frac{\mathbf{v}_{\pi/2} \cdot \mathbf{v}_{\theta}}{\|\mathbf{v}_{\pi/2}\| \|\mathbf{v}_{\theta}\|} = \frac{(\sin \theta) \|\mathbf{v}_{\pi/2}\|^2}{\|\mathbf{v}_{\pi/2}\| \|\mathbf{v}_{\theta}\|} = (\cos \theta) \frac{\|\mathbf{v}_{\pi/2}\|}{\|\mathbf{v}_{\theta}\|}$$
$$\Rightarrow \qquad \|\mathbf{v}_{\theta}\| = \|\mathbf{v}_{\pi/2}\| \quad \forall \theta \neq 0, \pi$$

Hence $\|\mathbf{v}_{\theta}\| = \|\mathbf{v}_{0}\|$ for all θ .

The angle from $\begin{pmatrix} u_x \\ v_x \end{pmatrix}$ to $\begin{pmatrix} u_y \\ v_y \end{pmatrix}$ is $\frac{\pi}{2}$, and by the above the two vectors have the same length.

$$u_y + iv_y = i(u_x + iv_x) = -v_x + iu_x$$

By the Cauchy-Riemann Equations u + iv is holomorphic and $|f'(z_0)|^2 = u_x^2 + u_y^2 \neq 0$.

Definition. A map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a *linear fractional transformation* if it is of the form

$$f(z) = \frac{\alpha z + \beta}{\gamma z + \delta}, \ \alpha \delta - \beta \gamma \neq 0$$

Since

$$f'(z) = \frac{\alpha(\gamma z + \delta) - \gamma(\alpha z + \beta)}{(\gamma z + \delta)^2} = \frac{\alpha \delta - \beta \gamma}{(\gamma z + \delta)^2} \neq 0,$$

linear fractional transformations are conformal.

Examples. $f(z) = z + \beta$; $g(z) = \alpha z$; $h(z) = \frac{1}{z}$.

Proposition 4.2. The linear fractional transformations of $\hat{\mathbb{C}}$ form a group G under composition of maps.

Proof. Routine, with

$$f(z) = \frac{\alpha z + \beta}{\gamma z + \delta} \Longrightarrow f^{-1}(z) = \frac{\alpha z - \beta}{-\gamma z + \alpha}.$$

Proposition 4.3. The group G is triply transitive. I.e., if (z_1, z_2, z_3) and (w_1, w_2, w_3) are triples of distinct points in $\hat{\mathbb{C}}$ then there is an $f \in G$ such that $f(z_i) = w_i$ for i = 1, 2, 3.

Proof. We first show $\exists f \in G$ such that $(z_1, z_2, z_3) \mapsto (0, 1, \infty)$:

$$f(z) = \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$$

Then $g(z) = \frac{z - w_1}{z - w_3} \frac{w_2 - w_3}{w_2 - w_1}$ takes (w_1, w_2, w_3) to $(0, 1, \infty)$. Hence, $h = g^{-1} \circ f$ takes (z_1, z_2, z_3) to (w_1, w_2, w_3) .

Proposition 4.4. *A linear fractional transformation is determined by its values at three distinct points.*

Proof. For i = 1, 2, 3 let $z_i \in \hat{\mathbb{C}}$, $f(z_i) = w_i$. Let *h* be as in the proof of Proposition 4.3 above such that $h(z_i) = w_i$. Consider $(h^{-1} \circ f): z_i \mapsto z_i$. Let $k = h^{-1} \circ f$, $k(z) = \frac{\alpha z + \beta}{z + \delta}$, which fixes three distinct points.

 $\frac{\alpha z+\beta}{z+\delta} = z$ is a quadratic equation in z, which cannot have three distinct roots unless $\gamma = \beta = 0$, $\alpha = \delta$, in which case $k = id_{\hat{c}}$ and h = f.

Theorem 4.5. A linear fractional transformation maps circles / lines to circles / lines. (On the Riemann sphere $\hat{\mathbb{C}}$, lines and circles are the same.)

Proof. Let f be a linear fractional transformation and let C be a circle. We wish to show that f(C) is also a circle. Note that a circle C is determined by any three points through which it passes. Choose $z_1, z_2, z_3 \in C$ distinct. From the proof of Proposition 4.3 there is a unique linear fractional transformation g such that $g:(z_1, z_2, z_3) \mapsto (0, 1, \infty)$. In fact, g takes C to \mathbb{R} .

Claim. If *h* is a linear fractional transformation then $h^{-1}(\mathbb{R})$ is a circle.

Proof. Write $h(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$ and find a z such that $h(z) \in \mathbb{R}$. If $h(z) \in \mathbb{R}$ then $\frac{\alpha z + \beta}{\gamma z + \delta} = \frac{\overline{\alpha z} + \overline{\beta}}{\overline{\gamma z} + \overline{\delta}}$. Hence $(\alpha z + \beta)(\overline{\gamma z} + \overline{\delta}) = (\overline{\alpha z} + \overline{\beta})(\gamma z + \delta)$ and so

$$(\alpha \overline{\gamma} - \overline{\alpha} \gamma) |z|^2 + (\alpha \overline{\delta} - \overline{\beta} \gamma) z - (\overline{\alpha} \delta - \beta \overline{\gamma}) \overline{z} + \beta \overline{\delta} - \overline{\beta} \delta = 0.$$

Case 1: if $\alpha \overline{\gamma} - \overline{\alpha} \gamma = 0$ then we obtain a line since $\alpha \delta - \beta \gamma \neq 0$.

Case 2: if $\alpha \overline{\gamma} - \overline{\alpha} \gamma \neq 0$ then the equation becomes $A|z|^2 + Bz + \overline{B}\overline{z} + C = 0$, $A = \alpha \overline{\gamma} - \overline{\alpha} \gamma$, $B = \alpha \overline{\delta} - \overline{\beta} \gamma$, $C = \beta \overline{\delta} - \overline{\beta} \delta$. Since $\alpha \delta - \beta \gamma \neq 0$, this is the equation of a circle, and the claim is proved.

By the claim, $g(C) = \mathbb{R}$. Hence $k = g^{-1} \circ f$ takes \mathbb{R} to f(C), which is a circle by the claim.

Although the one-to-one conformal maps from $\hat{\mathbb{C}}$ to itself are quite rigid (they are precisely the linear fractional transformations), on subdomains $\mathcal{D} \subset \mathbb{C}$ they are quite flexible. Ultimately we shall prove the Riemann Mapping Theorem:

Riemann Mapping Theorem. If $\mathcal{U} \subset \mathbb{C}$ is a simply connected domain there exists a one-to-one conformal map $f: \mathcal{U} \to D$ onto the open unit disc. Moreover, if we fix $z_0 \in \mathcal{U}$ we can find such an $f: \mathcal{U} \to D$ such that $f(z_0) = 0$ and $f'(z_0)$ is real and strictly positive, and this uniquely determines f.

In most cases we cannot extend f to $\overline{\mathcal{U}} = \mathcal{U} \cup \partial \mathcal{U}$.

Example.

Definition. Two domains $\mathcal{D}, \mathcal{D}' \subset \mathbb{C}$ are called *conformally equivalent* if there exists a conformal bijection $\mathcal{D} \to \mathcal{D}'$.

So the Riemann Mapping Theorem tells us that any simply connected domain is conformally equivalent to the unit disc D.

Question. What are the conformal bijections $D \rightarrow D$?

Theorem 4.6. (Schwarz Lemma) Suppose $f: D \to D$ is holomorphic and that f(0)=0. Then

$$|f(z)| \le |z| \tag{(*)}$$

and
$$|f'(0)| \le 1$$
 (**)

If equality is achieved for some $z_0 \in D$ then $f(z) = e^{i\theta_0}z$ for some fixed $\theta_0 \in [0, 2\pi]$.

Proof. Consider the function $g: z \mapsto \frac{f(z)}{z}$. This has a removable singularity at z = 0. We show that $|g(z)| \le 1$.

Choose $z_0 \in D$ and $|z_0| < r < 1$. Now consider $|g(z_0)|$:

$$|g(z_0)| \le \max_{|z| \le r} |g(z)| = \max_{z \in \partial B_r(0)} |g(z)|$$

by the Maximum Modulus Principle. Since $|g(z)| = \left|\frac{f(z)}{z}\right|$ on $\partial B_r(0)$ we have $|g(z)| = \frac{|f(z)|}{r} \le \frac{1}{r}$, which is true for all $|z_0| < r < 1$; so $|g(z)| \le 1 = \lim_{r \to 1} \frac{1}{r}$. Hence $|f(z)| \le |z|$ $\forall z \in D$.

Now since $|f'(0)| = |g(0)| \le 1$ we have (**).

If $|f(z_0)| = |z_0|$ for some $z_0 \in D$ then $|g(z_0)| = 1$. Since by the Maximum Modulus Principle g cannot attain maximum modulus on D unless |g| is constant, we have $|g(z_0)| = 1 \Rightarrow g(z) = e^{i\theta_0}$ for some real θ_0 .

Similarly, if $|f'(z_0)| = 1$, |g(0)| = 1, so $g(z) = e^{i\theta_0}$, so $f(z) = e^{i\theta_0}z$.

Theorem 4.7. Let $f: D \rightarrow D$ be a conformal bijection. Then f is a linear fractional transformation of the form

$$f(z) = e^{i\theta_0} \frac{z-z_0}{1-\overline{z}_0 z}$$

for some $z_0 \in D$, $\theta_0 \in [0, 2\pi]$.

Proof. First check that a linear fractional transformation of the form $f(z) = e^{i\theta_0} \frac{z-z_0}{1-\overline{z}_0 z}$ sends D to itself.

Consider $g = f^{-1}: D \to D$, which is also one-to-one conformal; $(g \circ f)(z) = z$, so g'(f(z))f'(z) = 1. Let $z_0 \in D$ be such that $f(z_0) = 0$, so $g'(0)f'(z_0) = 1$. Estimate |g'(0)|: we know $g(0) = z_0$, so put

$$\widetilde{g}(z) = \frac{z-z_0}{1-\overline{z}_0 z}$$
.

Then $\widetilde{g} \circ g : D \to D$ is such that $(\widetilde{g} \circ g)(0) = \widetilde{g}(z_0) = 0$. So $|\widetilde{g}'(z_0)g'(z_0)| \le 1$.

Similarly, put \widetilde{f} to be the inverse of $z \mapsto \frac{z-z_0}{1-\overline{z}_0 z}$,

$$\widetilde{f}(z) = \frac{z+z_0}{1+\overline{z}_0 z}$$

So $(f \circ \widetilde{f})(0) = 0$. Again by Schwarz's Lemma, $|f'(z_0)\widetilde{f}'(0)| \le 1$. Since $\widetilde{f}'(0) = 1 - |z_0|^2$, $|f'(z_0)| \le \frac{1}{1-|z_0|^2}$.

Since $f'(z_0)g'(0) = 1$, $|g'(0)| = \frac{1}{1-|z_0|^2} = |f'(z_0)|$,

$$\Rightarrow \qquad \left| (f \circ \widetilde{f})'(0) \right| = 1$$

$$\Rightarrow \qquad \qquad f \circ \widetilde{f} \equiv e^{i\theta_0}$$

$$\Rightarrow \qquad f(z) = e^{i\theta_0} \frac{z - z_0}{1 - \overline{z}_0 z}$$

The uniqueness part of the Riemann Mapping Theorem follows easily from Theorem 4.7. In the proof it is stated that if $f: D \to D$ is a conformal bijection with $f(z_0) = 0$ then $f(z) = e^{i\theta_0} \frac{z-z_0}{1-\overline{z_0}z}$ for some $\theta_0 \in [0, 2\pi]$. If $g: \mathcal{U} \to D$ is another conformal bijection such that $g(z_0) = 0$ and $g'(z_0) > 0$ then $g \circ f^{-1}: D \to D$ is a conformal bijection fixing 0. So $(g \circ f^{-1})(z) = e^{i\theta_0}z$ for some θ_0 , so $g(z) = e^{i\theta_0}f(z)$. Furthermore, since $g'(z_0) = e^{i\theta_0}f'(z_0)$, $e^{i\theta_0} = 1$, so f = g.

The existence part of the Riemann Mapping Theorem will be shown by considering the collection of functions

$$\mathcal{F} = \{ f : \mathcal{U} \to D \mid f \text{ holomorphic}, 1-1, f(z_0) = 0, f'(z_0) > 0 \}.$$

We need to show that $\exists f \in \mathcal{F}$ such that $f(\mathcal{U}) = D$. To do this we need to study certain facts about spaces of continuous functions.

Let $C(\mathcal{D}, \mathbb{C})$ be the collection of all continuous functions from an open domain $\mathcal{D} \subseteq \mathbb{C}$ to \mathbb{C} . (We can replace \mathbb{C} by any complete metric space.) What does it mean for a sequence of functions f_n to converge to some other function f in $C(\mathcal{D}, \mathbb{C})$? What does it mean to say that $f, g \in C(\mathcal{D}, \mathbb{C})$ are close together?

We say that $f_n \to f$ pointwise as $n \to \infty$ if for each $z \in \mathcal{D}$,

$$f_n(z) \xrightarrow[n \to \infty]{} f(z).$$

However, this is not good enough as continuity is not necessarily preserved by taking a pointwise limit.

We say that $f_n \to f$ uniformly on compact subsets as $n \to \infty$ if $\forall \varepsilon > 0$ and compact $K \subseteq \mathcal{D} \ \exists N \in \mathbb{N}$ such that $n > N, z \in K \Longrightarrow |f_n(z) - f(z)| < \varepsilon$.

If $f_n \to f$ uniformly on compact subsets and the f_n are each continuous then f is continuous.

Two functions $f, g \in C(\mathcal{D}, \mathbb{C})$ are close if they differ by a small amount on each compact $K \subseteq \mathcal{D}$.

Definition. Given a compact $K \subseteq \mathcal{D}$, $\varepsilon > 0$, $f \in C(\mathcal{D}, \mathbb{C})$ let

$$B_{K}(f,\varepsilon) = \left\{ g \in C(\mathcal{D},\mathbb{C}) \mid \sup_{z \in K} |f(z) - g(z)| < \varepsilon \right\}.$$

The sets $B_{\kappa}(f,\varepsilon)$ form a basis for a topology on $C(\mathcal{D},\mathbb{C})$, called the *topology of* compact convergence, equivalent to the compact-open topology on $C(\mathcal{D},\mathbb{C})$.

Proposition 4.8. $\{f_n\} \subseteq C(\mathcal{D}, \mathbb{C})$ converge to $f \in C(\mathcal{D}, \mathbb{C})$ in the topology of compact convergence if and only if $f_n \to f$ uniformly on compact subsets.

Theorem 4.9. Suppose $f_n : \mathcal{D} \to \mathbb{C}$ are holomorphic functions converging uniformly to some f on compact subsets. Then f is holomorphic. Moreover, $f'_n \to f'$ uniformly on compact subsets.

Proof. We show that f is holomorphic by Morera's Theorem. Let $\overline{B_R(z_0)} \subseteq \mathcal{D}$ and let γ be a closed curve in $B_R(z_0)$. Since $\overline{B_R(z_0)}$ is compact and γ is compact, and $f_n \to f$ uniformly on compact subsets, $\int_{\gamma} f_n \to \int_{\gamma} f$. By Cauchy's Theorem, $\int_{\gamma} f_n \equiv 0$, so $\int_{\gamma} f = 0$. By Morera's Theorem, f is holomorphic on $B_R(z_0)$, so f is holomorphic on \mathcal{D} .

Choose $z_0 \in \mathcal{D}$ and R > 0 such that $\overline{B_R(z_0)} \subseteq \mathcal{D}$. Let $z \in B_R(z_0)$.

$$f'_{n}(z) = \frac{1}{2\pi i} \int_{\partial B_{R}(z_{0})} \frac{f_{n}(w)}{(w-z)^{2}} dw$$
$$\rightarrow \frac{1}{2\pi i} \int_{\partial B_{R}(z_{0})} \frac{f(w)}{(w-z)^{2}} dw$$
$$= f'(z)$$

This implies that $f'_n \to f'$ uniformly on compact subsets.

Theorem 4.10. (Hurwitz's Theorem) Suppose $f_n : \mathcal{D} \to \mathbb{C}$ are holomorphic functions converging uniformly to some f on compact subsets. If each f_n has no zeroes in \mathcal{D} then either f has no zeroes in \mathcal{D} or f is identically zero on \mathcal{D} .

Proof. Suppose f is not identically zero. Suppose $\exists z_0 \in \mathcal{D}$ such that $f(z_0) = 0$. Since the zeroes of a holomorphic function are isolated we can choose $\overline{B_R(z_0)} \subseteq \mathcal{D}$ such that f has no other zeroes in $B_R(z_0)$. From Question Sheet 2 the number of zeroes of f in $B_R(z_0)$ (counted with multiplicity) is $\frac{1}{2\pi i} \int_{\partial B_R(z_0)} \frac{f'}{f}$. Since $f_n \to f$ uniformly on compact subsets,

$$\frac{1}{2\pi i}\int_{\partial B_R(z_0)}\frac{f'_n}{f_n}\longrightarrow \frac{1}{2\pi i}\int_{\partial B_R(z_0)}\frac{f'}{f}.$$

But $\frac{1}{2\pi i} \int_{\partial B_R(z_0)} \frac{f'_n}{f_n} = 0$ for each $n \in \mathbb{N}$ since f_n has no zeroes anywhere in \mathcal{D} . So either f has no zeroes in \mathcal{D} , or it is everywhere zero.

Definition. A family $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is said to be a *normal family* if every sequence (f_n) in \mathcal{F} contains a subsequence (f_{n_k}) that converges to some f uniformly on compact subsets. (It is not necessary that $f \in \mathcal{F}$.)

Remark. In fact, $C(\mathcal{D}, \mathbb{C})$ is a (complete) metric space. A normal family \mathcal{F} has a (sequentially) compact closure.

Definition. A family $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is said to be *equicontinuous* on $E \subseteq \mathcal{D}$ if for all $\varepsilon > 0$ there is a $\delta > 0$ such that $|z - w| < \delta \Rightarrow |f(z) - f(w)| < \varepsilon$ for all $f \in \mathcal{F}$ and $z, w \in \mathcal{D}$.

Theorem 4.11. (Arzela-Ascoli) A family of functions $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is normal if and only if both (1) \mathcal{F} is equicontinuous on every compact subset $K \subseteq \mathcal{D}$; and (2) for each $z \in \mathcal{D}$, $\{f(z) \mid f \in \mathcal{F}\}$ is bounded in \mathbb{C} .

Proof. (\Rightarrow) Suppose \mathcal{F} is normal. We first show that $\{f(z) \mid f \in \mathcal{F}\}$ is bounded.

Suppose not. Then there is a sequence (f_n) in \mathcal{F} such that $|f_n(z)| > n$. Since \mathcal{F} is normal there is a subsequence (f_{n_k}) such that $f_{n_k} \to f$ uniformly on compact subsets. If so, $|f_{n_k}(z) - f(z)| < 1$ for large k; then $|f_{n_k}(z)| < |f(z)| + 1$ for large k, a contradiction, since a continuous function is bounded on a compact set.

We now show that if \mathcal{F} is normal then \mathcal{F} is equicontinuous on each compact $K \subseteq \mathcal{D}$.

Suppose not. Then there is a compact $K \subseteq \mathcal{D}$ such that $\exists \varepsilon_0 > 0$ such that $\forall n \in \mathbb{N}$ $\exists z_n, w_n \in K$ such that $|z_n - w_n| < \frac{1}{n}$ and $|f_n(z_n) - f_n(w_n)| \ge \varepsilon_0$ for $f_n \in \mathcal{F}$. Since \mathcal{F} is normal, there is a subsequence (f_{n_k}) of (f_n) such that $f_{n_k} \to f$ uniformly on compact subsets. I.e., for any $\varepsilon > 0$ and compact E, $|f_{n_k}(z) - f(z)| < \varepsilon$ for all $z \in E$ and sufficiently large k. For our compact set K there exists N such that $k > N \Rightarrow |f_{n_k}(z) - f(z)| < \frac{\varepsilon_0}{3}$ for all $z \in K$. Since f is continuous on \mathcal{D} it is uniformly continuous on K. Hence, there is a $\delta > 0$ such that $|z - w| < \delta \Rightarrow |f(z) - f(w)| < \frac{\varepsilon_0}{3}$ for all $z, w \in K$. Then

$$\begin{split} \left| f_{n_{k}}(z_{n_{k}}) - f_{n_{k}}(w_{n_{k}}) \right| &\leq \left| f_{n_{k}}(z_{n_{k}}) - f(z_{n_{k}}) \right| + \left| f(z_{n_{k}}) - f(w_{n_{k}}) \right| + \left| f(w_{n_{k}}) - f_{n_{k}}(w_{n_{k}}) \right| \\ &\leq \frac{\varepsilon_{0}}{3} + \frac{\varepsilon_{0}}{3} + \frac{\varepsilon_{0}}{3} \\ &= \varepsilon_{0}, \end{split}$$

which contradicts $|f_n(z_n) - f_n(w_n)| \ge \varepsilon_0$ above.

(\Leftarrow) Now suppose \mathcal{F} satisfies (1) and (2); let (f_n) be a sequence in \mathcal{F} .

We show that (f_n) has a subsequence that converges on a dense set of points $\{z_m \mid m \in \mathbb{N}\} \subseteq \mathcal{D}$. We can always find such a countable collection, e.g. an enumeration of $(\mathbb{Q} + i\mathbb{Q}) \cap \mathcal{D}$.

For $z = z_1$, by (2), $\{f_n(z_1) \mid n \in \mathbb{N}\}$ is bounded. So there is a subsequence $(f_{n_{1l}})$ such that $f_{n_{1l}}(z_1)$ converges as $l \to \infty$. Now take a subsequence $(f_{n_{2l}})$ of $(f_{n_{1l}})$, by (2), such that $f_{n_{2l}}(z_2)$ converges as $l \to \infty$. Continue inductively, obtaining rows of subscripts

$$n_{11} < n_{12} < n_{13} < \dots$$

$$n_{21} < n_{22} < n_{23} < \dots$$

$$\vdots$$

$$n_{k1} < n_{k2} < n_{k3} < \dots$$

$$\vdots$$

such that each row is a subset of the one above it, and such that $f_{n_{kl}}(z_m)$ converges as $l \to \infty$ for m = 1, ..., k. Take the diagonal sequence $f_{n_l} = f_{n_{kl}}$, $l \in \mathbb{N}$. It is easy to see that for any m, $f_{n_l}(z_m)$ converges as $l \to \infty$.

We now show that for any compact $K \subseteq \mathcal{D}$ f_{n_i} is uniformly Cauchy on K, i.e. $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $i, j > N, z \in K \Rightarrow |f_{n_i}(z) - f_{n_j}(z)| < \varepsilon$. (Exercise: Check that being uniformly Cauchy on compact subsets implies uniform convergence on compact subsets.) Let $\varepsilon > 0$. Since \mathcal{F} is equicontinuous on K, $\exists \delta > 0$ such that $\forall z, w \in K, f \in \mathcal{F}$, $|z - w| < \delta \Rightarrow |f(z) - f(w)| < \frac{\varepsilon}{3}$. Since K is compact we can cover K with a finite number of balls of radius $\leq \frac{\delta}{2}$. Since $\{z_m \mid m \in \mathbb{N}\}$ is dense, we can choose a z_m in each ball, say z_1, \ldots, z_M . Let N be such that $i, j > N \Rightarrow |f_{n_i}(z_m) - f_{n_j}(z_m)| < \varepsilon$ for $m = 1, \ldots, M$. Then for $z \in K$,

$$\left| f_{n_i}(z) - f_{n_j}(z) \right| \leq \left| f_{n_i}(z) - f_{n_i}(z_m) \right| + \left| f_{n_i}(z_m) - f_{n_j}(z_m) \right| + \left| f_{n_j}(z_m) - f_{n_j}(z) \right|$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$
$$= \varepsilon$$

So, given (1) and (2), \mathcal{F} is normal.

Definition. $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is *locally uniformly bounded* on \mathcal{D} if $\forall z_o \in \mathcal{D}$, $\exists B_R(z_0) \subseteq \mathcal{D}$ such that $\exists M > 0$ such that $\forall z \in B_R(z_0), f \in \mathcal{F}$, |f(z)| < M.

Theorem 4.12. (Montel's Theorem) If $\mathcal{F} \subseteq C(\mathcal{D}, \mathbb{C})$ is a locally uniformly bounded family of holomorphic functions then \mathcal{F} is a normal family.

Proof. By Arzela-Ascoli we need to check (1) $\forall z \in \mathcal{D}, \{f(z) \mid f \in \mathcal{F}\}$ is bounded; (2) \forall compact $K \subseteq \mathcal{D}, \mathcal{F}$ is equicontinuous on K.

(1) is clear, since \mathcal{F} is locally uniformly bounded.

(2) We first show that given $z_0 \in \mathcal{D} \ \exists \overline{B_R(z_0)} \subseteq \mathcal{D}$ such that \mathcal{F} is equicontinuous on $\overline{B_R(z_0)}$. Since \mathcal{F} is locally uniformly bounded $\exists \overline{B_r(z_0)} \subseteq \mathcal{D}$ and M > 0 such that |f| < M for all $f \in \mathcal{F}$. Let $\varepsilon > 0$, $w, z \in \overline{B_{r/2}(z_0)}$ and $f \in \mathcal{F}$.

$$f(z) - f(w) = \frac{1}{2\pi i} \int_{\partial B_{r/2}(z_0)} \frac{f(\xi)}{(\xi - z)} d\xi - \frac{1}{2\pi i} \int_{\partial B_{r/2}(z_0)} \frac{f(\xi)}{(\xi - w)} d\xi$$
$$= \frac{1}{2\pi i} \int_{\partial B_{r/2}(z_0)} \frac{f(\xi)(z - w)}{(\xi - z)(\xi - w)} d\xi$$

Use the Estimation Lemma with $|\xi - z|, |\xi - w| \ge \frac{r}{2}$:

$$|f(z) - f(w)| \le \frac{1}{2\pi} M \frac{|z-w|}{(r/2)^2} 2\pi r = \frac{4M}{r} |z-w|$$

Let $\delta = \frac{r\varepsilon}{4M}$. Then we have that \mathcal{F} is equicontinuous on $B_{r/2}(z_0)$. Any compact $K \subseteq \mathcal{D}$ can be covered by such discs, and this cover has a finite subcover. So \mathcal{F} is equicontinuous on K.

Theorem 4.13. (Riemann Mapping Theorem) Given any simply connected domain $\mathcal{U} \subset \mathbb{C}$ and $z_0 \in \mathcal{U}$ there is a unique conformal bijection $f : \mathcal{U} \to D$ such that $f(z_0) = 0$ and $f'(z_0) > 0$.

Proof. Uniqueness has already been shown. Consider

$$\mathcal{F} = \left\{ f : \mathcal{U} \to D \mid f \text{ holomorphic, 1-1, } f(z_0) = 0, f'(z_0) > 0 \right\}$$

and proceed to show

(1) $\mathcal{F} \neq \emptyset$; (2) $\exists f \in \mathcal{F}$ with maximal derivative at z_0 ; (3) the f in (2) maps onto D.

Step 1. Let $a \in \mathbb{C} \setminus \mathcal{U}$. g(z) = z - a is never zero on \mathcal{U} . g has a square root; we can find a branch of the multivalued function $\sqrt{z-a}$ that is holomorphic on \mathcal{U} . Set $h(z) = \sqrt{z-a}$. h is one-to-one on \mathcal{U} : if $\sqrt{z_1 - a} = \sqrt{z_2 - a}$ then $z_1 = z_2$.

If h(z) = w for some $z \in \mathcal{U}$ then *h* never takes the value -w in \mathcal{U} . Since $h: \mathcal{U} \to \mathbb{C}$ is holomorphic, it is open, by the Open Mapping Theorem. So there is a $B_R(h(z_0)) \subseteq h(\mathcal{U})$. By the above, $-B_R(h(z_0)) = B_R(-h(z_0))$ is such that $-B_R(h(z_0)) \cap h(\mathcal{U}) = \emptyset$. So $h(\mathcal{U})$ lies in the interior of $B_R(-h(z_0))$.

We can construct a linear fractional transformation k that takes $\mathbb{C} \setminus B_R(-h(z_0))$ onto \overline{D} . We can further compose with a linear fractional transformation of the form

$$j(z) = e^{i\theta_0} \frac{z - (k \circ h)(z_0)}{1 - (k \circ h)(z_0)z}.$$

Then $(j \circ k \circ h)(z_0) = 0$ and $(j \circ k \circ h)'(z_0) > 0$.

Step 2. Let $M = \sup_{f \in \mathcal{F}} f'(z_0)$. Let $f_n \in \mathcal{F}$ be such that $f'_n(z_0) \xrightarrow[n \to \infty]{} M$. Observe that since \mathcal{F} is (locally) uniformly bounded (D is bounded), $M < \infty$ by Cauchy's Integral Formula.

By Montel's Theorem, \mathcal{F} is a normal family. Hence, (f_n) has a subsequence (f_{n_n}) converging to some f uniformly on compact subsets $K \subseteq \mathcal{U}$. $f: \mathcal{U} \to \mathbb{C}$ is holomorphic, $f(z_0) = 0$ and $f'(z_0) = M$. Furthermore, since $|f_{n_k}| < 1$, |f| < 1, i.e. $f(\mathcal{U}) \subseteq D$.

We now show f is one-to-one. Choose $z_1 \in \mathcal{U}$; show $f(z) \neq f(z_1)$ for $z \in \mathcal{U} \setminus \{z_1\}$. Put $g_{n_k}(z) = f_{n_k}(z) - f_{n_k}(z_1)$. g_{n_k} converges uniformly to $f(z) - f(z_1)$ on compact subsets of \mathcal{U} , and on every compact subset of $\mathcal{U} \setminus \{z_1\}$. Since g_{n_k} is never zero on $\mathcal{U} \setminus \{z_1\}$, by Hurwitz's Theorem, either $f(z) - f(z_1)$ is never zero on $\mathcal{U} \setminus \{z_1\}$ or it is everywhere zero. But f is non-constant since $f'(z_0) = M > 0$.

Step 3. We proceed by contradiction: suppose $\exists w_0 \in D \setminus f(\mathcal{U})$. Then the linear fractional transformation $z \mapsto \frac{f(z)-w_0}{1-\overline{w_0}f(z)}$ is $\phi \circ f$ where $\phi: D \to D: z \mapsto \frac{z-w_0}{1-\overline{w_0}z}$ and $\phi \circ f$ is never zero on \mathcal{U} . Therefore, there exists a branch of the square root

$$F(z) = \sqrt{\frac{f(z) - w_0}{1 - \overline{w}_0 f(z)}}$$

Note that $F(\mathcal{U}) \subseteq D$ and F is one-to-one. Further compose F with the linear fractional transformation ψ ,

$$\psi(z) = \frac{z - F(z_0)}{1 - F(z_0)z} \frac{|F'(z_0)|}{F'(z_0)}.$$

Again note that $\psi \circ F : \mathcal{U} \to D$ is one-to-one and $(\psi \circ F)(z_0) = 0$,

$$(\psi \circ F)'(z_0) = \frac{|F'(z_0)|}{|F'(z_0)|^2} \frac{1}{1+|F(z_0)|^2} F'(z_0)$$
$$= \frac{|F'(z_0)|}{1+|F(z_0)|^2}$$
$$F'(z_0) = \frac{1-|w_0|^2}{2\sqrt{|w_0|}} f'(z_0)$$
$$|F'(z_0)| = \frac{1-|w_0|^2}{2\sqrt{|w_0|}} M$$

 \Rightarrow

$$\begin{aligned} 1 - \left| F(z_0) \right|^2 &= 1 - \left| \sqrt{-w_0} \right|^2 = 1 - \left| w_0 \right| \\ (\psi \circ F)'(z_0) &= \frac{1 - \left| w_0 \right|^2}{2\sqrt{|w_0|}} \frac{1}{1 - \left| w_0 \right|} M \\ &= \frac{1 + \left| w_0 \right|}{2\sqrt{|w_0|}} M \\ &> M \end{aligned}$$

So there is no such w_0 , so $f(\mathcal{U}) = D$.

5. HARMONIC MAPS

Let $\Omega \subseteq \mathbb{R}^n$ be some open set. A function $u: \Omega \to \mathbb{R}$ satisfies Laplace's equation if

$$u_{x_1x_1} + \ldots + u_{x_nx_n} = 0$$
.

Such a function, where the first and second partial derivatives exist and are continuous, is called *harmonic*.

Dirichlet Problem. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f : \partial \Omega \to \mathbb{R}$ be continuous. Find a solution to the boundary value problem

$$\Delta u = u_{x_1 x_1} + \ldots + u_{x_n x_n} = 0 \text{ on } \Omega,$$
$$u = f \text{ on } \partial \Omega.$$

When n = 2 we can use complex analysis to solve the Dirichlet Problem. Recall that if $f = u + iv: \mathcal{D} \to \mathbb{C}$ is holomorphic then u, v are harmonic on \mathcal{D} .

First note that if, for example, $u(x, y) = \log(x^2 + y^2)^{1/2}$, $(x, y) \neq 0$, is harmonic on $\mathbb{C} \setminus \{0\}$ there is no holomorphic $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ for which $u = \operatorname{Re} f$.

Theorem 5.1. Given a harmonic function $u: U \to \mathbb{R}$ on a simply connected domain $U \subseteq \mathbb{C}$ there is a holomorphic $f: U \to \mathbb{C}$ such that $u = \operatorname{Re} f$.

Proof. If there were such an f we would have $f' = u_x + iv_x$ and $f' = u_x + iv_y$. Consider $g = u_x + iv_y$. We see that g is holomorphic since

$$(u_x)_x = u_{xx} = -u_{yy} = -(u_y)_y, (u_x)_y = u_{xy} = u_{yx} = -(-u_y)_x.$$

Then by Cauchy's Theorem, $\int_{\gamma} g = 0$ for every closed curve γ in \mathcal{U} . By Theorem 2.1, g has an anti-derivative on \mathcal{U} . Let f be an anti-derivative of g on \mathcal{U} . Re f = u + c for some constant $c \cdot f - c$ is a holomorphic function with $\operatorname{Re}(f - c) = u$.

Corollary 5.2. Let $\mathcal{U} \subseteq \mathbb{C}$ be a simply connected domain and $f : \mathcal{U} \to \mathbb{C}$ holomorphic. If $u : f(\mathcal{U}) \to \mathbb{R}$ is harmonic then $u \circ f$ is harmonic.

Proof. Let $g: f(\mathcal{U}) \to \mathbb{C}$ be holomorphic such that $u = \operatorname{Re} g$. Then $u \circ f = \operatorname{Re}(g \circ f)$ is harmonic.

Hence, if we can solve the Dirichlet Problem on D and can find a bijective conformal map $g: \mathcal{U} \to D$ such that $g: \overline{U} \to \overline{D}$ is continuous, we can solve the Dirichlet Problem on \mathcal{U} .

Theorem 5.3. Let $u: \mathcal{D} \to \mathbb{R}$ be harmonic. Then it satisfies the Mean Value Property that $\forall z_0 \in \mathcal{D}$ and $\overline{B_r(z_0)} \subseteq \mathcal{D}$,

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt.$$

Proof. Let $f: \overline{B_r(z_0)} \to \mathbb{C}$ be holomorphic such that $u = \operatorname{Re} f$. By Gauss' Mean Value Theorem,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$
.

Now take real parts.

Theorem 5.4. (Maximum Principle) Suppose $u: \mathcal{D} \to \mathbb{R}$ is harmonic and non-constant on a connected domain \mathcal{D} . The *u* cannot attain a maximum on (the interior of) \mathcal{D} .

Proof. This follows directly from the Mean Value Property: suppose there were a maximum at $z_0 \in \mathcal{D}$. Since

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt \le u(z_0),$$

 $u(z_0) = u(z_0 + re^{it})$ for all t, r such that $\overline{B_r(z_0)} \subseteq \mathcal{D}$. So u is constant, a contradiction.

We return to the Dirichlet Problem for the disc. Let $F : \partial D \to \mathbb{R}$ be continuous. Find the harmonic function $u: D \to \mathbb{R}$ such that u is continuous on D and $\lim_{z \to e^{i\theta}} u(z) = F(e^{i\theta})$.

Boundary values determine the function on the interior for holomorphic functions by Cauchy's Integral Formula

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\xi)}{\xi - z} d\xi .$$

Theorem 5.5. (Poisson's Integral Formula) Let u be harmonic on a domain containing $\overline{B_R(0)}$. Then for $z = re^{i\theta} \in B_R(0)$,

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) + r^2} u(Re^{it}) dt.$$

 $P(t) = P(r, \theta, R, t) = \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) + r^2}$ is called the *Poisson kernel*.

Proof. Let $f: \overline{B_R(0)} \to \mathbb{C}$ be holomorphic with $u = \operatorname{Re} f$. Use a "reflection trick" to show

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P(t) f(Re^{it}) dt \, .$$

This will immediately yield the desired result by taking real parts. We can assume $re^{i\theta} \neq 0$ since the result is immediate from the Mean Value Theorem otherwise. Set $z^* = \frac{R^2}{z} = \frac{R^2}{r}e^{i\theta}$. Then

$$\frac{1}{2\pi i}\int_{\partial B_R(0)}\frac{f(\xi)}{\xi-z^*}d\xi=0$$

by Cauchy's Theorem. So

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{f(\xi)}{\xi - z^*} d\xi$$
$$= \frac{1}{2\pi i} \int_{\partial B_R(0)} (\frac{1}{\xi - z} - \frac{1}{\xi - z^*}) f(\xi) d\xi$$
$$= \frac{1}{2\pi i} \int_{\partial B_R(0)} \frac{R^2 - r^2}{(\xi - z)(R^2 - \xi \bar{z})} f(\xi) d\xi$$

Substitute in $\xi = Re^{it}$, $z = re^{i\theta}$:

$$\frac{d\xi}{(\xi-z)(R^2-\xi\,\overline{z})} = \frac{iRe^{it}\,dt}{\left(Re^{it}-re^{i\theta}\right)\left(R^2-rRe^{i(t-\theta)}\right)}$$
$$= \frac{i\,dt}{\left(Re^{it}-re^{i\theta}\right)\left(Re^{-it}-re^{-i\theta}\right)}$$
$$= \frac{i\,dt}{R^2-2rR\cos(\theta-t)+r^2}$$

Hence,

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) + r^2} f(Re^{it}) dt .$$

Theorem 5.6. Let $u: B_R(0) \to \mathbb{R}$ be harmonic; suppose u is continuous on $\overline{B_R(0)}$. For $z = re^{i\theta} \in B_R(0)$,

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P(t) u(\operatorname{Re}^{it}) dt .$$

Proof. Let $t_n \uparrow 1$ and set $u_n(z) = u(t_n z)$. u_n is harmonic on $\overline{B_R(0)}$. By Theorem 5.5,

$$\frac{1}{2\pi} \int_0^{2\pi} P(t) u_n \left(Re^{it} \right) dt = u_n \left(re^{i\theta} \right)$$
$$= u \left(t_n re^{i\theta} \right)$$
$$\xrightarrow[n \to \infty]{} u \left(re^{i\theta} \right)$$

We show

$$\frac{1}{2\pi}\int_0^{2\pi} P(t)u_n(Re^{it})dt \xrightarrow[n\to\infty]{} \frac{1}{2\pi}\int_0^{2\pi} P(t)u(Re^{it})dt.$$

Consider the quantity

$$I_n = \frac{1}{2\pi} \int_0^{2\pi} P(t) \left| u_n(Re^{it}) - u(Re^{it}) \right| dt .$$

Given $\varepsilon > 0$, $|u_n(Re^{it}) - u(Re^{it})| < \varepsilon$ for sufficiently large *n*, since *u* is uniformly continuous on $\overline{B_R(0)}$. So

$$I_n < \frac{1}{2\pi} \varepsilon \int_0^{2\pi} P(t) dt = \frac{\varepsilon}{2\pi} \underset{n \to \infty}{\longrightarrow} 0$$

Theorem 5.7. Let $F : \partial B_R(0) \to \mathbb{R}$ be continuous. Define

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) = r^2} F(Re^{it}) dt.$$

Then (1) u is harmonic on $B_R(0)$; and (2) $\lim_{r \to R} u(re^{i\theta}) = F(Re^{i\theta}).$

Proof. (1) Key fact: if $\xi = Re^{it}$, $z = re^{i\theta}$, then $P(r, \theta, R, t) = \operatorname{Re}\left(\frac{\xi+z}{\xi-z}\right)$. Hence, if $u = \operatorname{Re}g$ for some holomorphic g,

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{\xi+z}{\xi-z}\right) F\left(Re^{it}\right) dt$$
$$g(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\xi+z}{\xi-z} F\left(Re^{it}\right) dt$$

 \Rightarrow

g is holomorphic in z:

$$\frac{g(z+h)-g(z)}{h} = \frac{1}{2\pi} \int_0^{2\pi} \frac{2\xi}{(\xi-z)(\xi-(z+h))} F(Re^{it}) dt$$
$$\longrightarrow_{h\to 0} \frac{1}{2\pi} \int_0^{2\pi} \frac{2\xi}{(\xi-z)^2} F(Re^{it}) dt$$

Since $u = \operatorname{Re} g$, u is harmonic.

(2) We show
$$|u(re^{i\theta}) - F(Re^{i\theta})|_{r\uparrow R} \rightarrow 0$$
. Trick: $\int_{0}^{2\pi} P(r,\theta,R,t) dt = 2\pi$.
 $u(re^{i\theta}) - F(Re^{i\theta}) = \frac{1}{2\pi} \int_{0}^{2\pi} P(r,\theta,R,t) (F(Re^{it}) - F(Re^{i\theta})) dt$

Note that if $t = \theta$ then $P(r, \theta, R, t) = \frac{R+r}{R-r}$. Choose $\varepsilon > 0$. We can find $\delta > 0$ such that $|t - \theta| < \delta \Rightarrow |F(Re^{it}) - F(Re^{i\theta})| < \varepsilon$. Then

$$\frac{1}{2\pi} \int_{\theta-\delta}^{\theta+\delta} P(t) |F(Re^{it}) - F(Re^{i\theta})| dt < \varepsilon \frac{1}{2\pi} \int_{\theta-\delta}^{\theta+\delta} P(t) dt$$
$$< \varepsilon \frac{1}{2\pi} \int_{0}^{2\pi} P(t) dt$$
$$= \varepsilon$$

Consider $\frac{1}{2\pi} \int_{\theta-\delta}^{\theta+\delta} P(t) F(Re^{it}) - F(Re^{i\theta}) dt$. When $t \in [0, \theta - \delta] \cup [\theta + \delta, 2\pi]$,

$$P(t) \leq \frac{R^2 - r^2}{R^2 - 2Rr\cos\delta + r^2}$$
$$\leq \frac{R^2 - r^2}{R^2 - 2R^2 r^2 \cos^2\delta + (R\cos\delta)^2}$$
$$\leq \frac{R^2 - r^2}{R^2 \sin^2\delta}$$
$$\leq \frac{(R+r)(R-r)}{R^2 \sin^2\delta}$$
$$\leq \frac{2(R-r)}{R\sin^2\delta}$$

We can choose $\delta' > 0$ such that $|R - r| < \delta' \Longrightarrow |P(t)| < \varepsilon$. Then

$$\frac{1}{2\pi}\int_0^{2\pi} P(t) F(Re^{it}) - F(Re^{i\theta}) dt < \varepsilon M .$$

Remark. We can modify the proof to show that $\lim_{z \to Re^{i\theta}} u(z) = F(Re^{i\theta})$ and show that u is continuous on $\overline{B_R(0)}$.

Theorem 5.8. Suppose $u : \mathcal{D} \to \mathbb{R}$ is continuous and satisfies the Mean Value Property. *Then u is harmonic.*

Proof. Choose $\overline{B_R(z_0)} \subseteq \mathcal{D}$. By Theorem 5.7 there exists a harmonic function \widetilde{u} on $\overline{B_R(z_0)}$ such that $\widetilde{u}|_{\partial B_R(z_0)} = u|_{\partial B_R(z_0)}$. Then $\widetilde{u} - u$ satisfies the Mean Value Property and $\widetilde{u} - u = 0$ on $\partial B_R(z_0)$. Hence $\widetilde{u} = u$ on $\overline{B_R(z_0)}$.