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1. DEFINITIONS AND BASIC PRINCIPLES

An algebra over C is a vector space 4 over C with a bilinear multiplication
AxA—> A, (x,y) > xy . Bilinearity means that for all x,ye 4 and 1 €C

(.xl + x2 )y = .xly + x2y
x(yl + yz): Xy, + Xy,
(Ax)y = x(2y) = 2(x)

All the algebras in this course will be over C. The main advantage of C is that it is
algebraically closed.

An associative algebra is an algebra A such that for all x,y,z€ 4, x(yz) = (xy)z .
A Lie algebra’ is an algebra L with multiplication Lx L — L, (x, y) > [xy] such that

[xx]=0 forall xe L,
v l]+ [[yz]x]+ [[zx]y] = 0 for all x,y,z € L — the Jacobi identity.

Unless otherwise specified, L shall be an arbitrary Lie algebra. Where dictated by
requirements of clarity, we shall write [x, y] for [xy].

Lemma 1.1. For all x,y €L, [xy]=-[yx].
Proof.

0="[x+y,x+y]=[c]+ [oy]+ ]+ ] = [xy]+ ]

We say that Lie multiplication is anticommutative.

Lemma 1.2. Suppose A is an associative algebra. Then A can be made into a Lie
algebra by defining [xy] =Xy — yX.

Proof. [xx]=0 is clear.

[xyle]= [y = yw,z] = xpz = yoz = zxy + zyx
[[yZ ]X] = ny — Zyx — xyZ + ny
[zx]y]= zxy — xzy — yxz + yxz

" After Marius Sophus Lie (1842-99).
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All terms cancel, so we have the Jacobi identity.

The Lie algebra obtained in this way is denoted [4].

We can also multiply subspaces in the following way: let L be a Lie algebra and H,K
subspaces of L. We define [HK ] to be the smallest subspace containing all the Lie
products [hk] for he H,ke K . So

[EK]={[nk]+...+[nk ]| h e Hk eK}.
Lemma 1.3. If H,K are subspaces of L then [HK|=[KH].

Proof.

[HK )5 [hh | +...+[n Kk |=]kh]—...=[kh ] [KH]

Multiplication of subspaces is commutative.

H c L is called a subalgebra of L if H is a subspace of L and [HH]|c H . That is, a

subalgebra of L is a subset of L that is itself a Lie algebra under the same operations as
L.

A subset 7 C L is called an ideal of L if I is a subspace of L and [IL]c 1. We will
write / < L.

Note. Since [IL]=[LI], [IL]c I < [LI]c 1.
Every ideal of L is also a subalgebra of L, but the converse is not true.

Example. Consider M, = {2 x 2 matrices over C}. [M,] is a Lie algebra. The subset T of
elements of [M, ] of trace zero form an ideal of [M,]. The subset U of elements of [M, ]
with upper-right element zero form a subalgebra of [M 2] , but not an ideal.

Proposition 1.4. (i) If H,K are subalgebras then H N K is a subalgebra.
(i) If H K <L then HNK < L.

(iii) If H < L and K is a subalgebra then H + K is a subalgebra.
(iv)If H. K <L then H+K < L.

Proof. (i) H N K is certainly a subspace.
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[HNK,HNK|c[HH]|c H
[HNK.HNK]|c[KK]c K
(ii)
[HnK,L|c[HL]c H
[H nK,L]c[KL]c K
(iii)
[H+K,H+K|c[HH]+[HK]+[KH]|+[KK|cH+H+H+K c H+K
(iv)

[H+K,L]c[HL]+[KL]c H + K

Note. The sum of two subalgebras need not be a subalgebra.

We can form factor algebras: let I < L. In particular, / is an additive subgroup so we
can form the factor group L/ ; the elements of L/I are the cosets I+ x for xe L.

(I+x)+(I+y)=T+(x+y)
AT +x)=1+Ax

We define [/ +x,/ + y]=1+[xy]. We do need to check that this is well-defined, i.e. that
if T+x=I1+x"and I+y=1I+)" then I+[xy]=1+[xy']. We can find i,i, eI such
that x' =i, +x and y'=i,+ y. So

[x'y'] = [il +x,05, + y]
= [iliZ ] + [i1y] + [Xiz ] + [xy]
el+ [xy]
So the coset containing [xy] is the same as that containing [x'y'].

It is easy to verify that L/[ is a Lie algebra.

A homomorphism of Lie algebras is a linear map @:L, — L, such that for all x,yeL,,
O([xy])=[6(x),6(»)]. If @ is bijective it is called an isomorphism and we write L, = L, .

Proposition 1.5. Let 0:L, — L, be a homomorphism with kernel K. Then K <L,
im(0) is a subalgebra of L, and L, /K =im(8).
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Proof. Let x,y e L, . [0(x),6(y)]=0[xy]€ O(L,), so im(0) is a subalgebra of L,.

Now let xe K and y e L,. Then

olxv]=[0(x).0(y)]=[0.6(»)]=0
so ye K. Hence, K <L,.
Now let x,ye L, .
0(x)=0(y)=0(x-y)=0=x-yeK>K+x=K+y

So O(x)— K +x is a bijection between im(@) and L /K. We now check that this
bijection is an isomorphism of Lie algebras: let x,y,z € L,.

[0(x).0(v)]=0(2) = 6lv]= 0(z)
< K+ [xy] =K+z
<:>[K+x,K+y]:K+Z

So im(@)= L, /K .
]

Proposition 1.6. Let [ <L and H a subalgebra of L. Then [+ H and I ~"H are
subalgebras (by 1.4) and

(i) I<l+H,

(i) InH<H,

(i) [+ H)/[I=H/(I~H).

Proof. (i) [I,I + H]c[1,L]c 1.
(if)

[I~nH,H]|c[IH]|cT
[I~H H]c[HH]c H

(iii) We can form (7 +H)/I and H/(I ~nH). Elements of (I+ H)/I have the form
I+i+h=1+h for he H. Define a map 0:H—>(1+H)/1 by 9(h)=1+h. This map
is a homomorphism since [I+ /4,1 +h'|=1+[hk']. 1t is surjective: im(@)=(I+H)/I.
Consider ker(d): heker(@)=>I+h=I<hel. So ker(@)=HNI. By 15
H/ker(6)=im(@),so (I +H)/I=H/(I"H).

]
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Note. In this course we shall consider only finite-dimensional Lie algebras over C. In
this case,

dim(L/7)= dim(L)— dim(7)

To prove this, select a basis e,...,e, of / and extend to a basis e,,...,e, of L. Each
element of L has the form Ae +...+4e, ; each element of L/I has the form
I+A4.,e.,.+...+4e = (I+/1H1e,+1)+...+(1+/1nen). I+e.,,....,]+e, form a basis for
L/1.So dim(L/I)=n—r=dim(L)~-dim(7).

Examples. If dim(L)=1, L has basis x. [xx]=0,s0 [LL]=0.

If dim(Z)=2 let x,y be a basis for L. [xx]=[y]=0, but [xy]=-[yx]=? Possibly
[LL]=0.1f [LL]# 0 then dim([ZL])=1. Let x' be a basis for [LL] and x',y" a basis for
L itself. Then we have [xy']= Ax" for some A e C\{0}. Re-choose y"=A"y": we then
have that [xy]=x. Hence, we have two Lie algebras of dimension 2.
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2. REPRESENTATIONS AND MODULES OF LIE ALGEBRAS

Recall that M, = {n x n matrices over C} and that [M, ] is the Lie algebra of such matrices
with [4B]= 4B - BA.

A representation of a Lie algebra L is a homomorphism p: L — [M,] for some neN.
Ie.,

pl]=[px). p(»)]= plx)o(y)- p(y)o(x).

If p is a representation of L then so is p’ given by p'(x) =T p(x)T where 7 is a non-
singular n x n matrix independent of x. We say that two representations are equivalent if
there is a non-singular 7" such that p'(x) =T p(x)T holds forall xe L.

An L -module is a vector space V' over C with amap V' x L — V' such that
(i) (v,x)> vx is linear in both v and x;

(i1) v[xy] = (vx)y - (vy)x forall veV and x,ye L.
We shall only deal with finite-dimensional L-modules in this course.

A submodule W of V 1is a subspace of V' such that wx e W for all weW,xeL i.e. a
subspace closed under the right action of the element of L.

Proposition 2.1. Let V be an L-module with basis e,...,e,. Let x€L and let

ex= ZLI py.(x)ej. Let p(x) be the matrix with ij th entry pl.j(x). Then x> p(x) is a

representation of L and a different choice of basis gives an equivalent representation.

Proof. The linear transformation v+ vx has matrix p(x); vi>(vx)y has matrix

p(x)p(y); Vi (vy)x has matrix p(y)p(x); Vi (vx)y—(vy)x has matrix
p(x)p(y)— p(y)p(x). That is, the linear transformation v > v[xy] has matrices p[xy]

and p(x)p(y)- p(y)o(x). So plxy]= p(x)p(y)- p(¥)p(x), so p is a representation of
L.

Now take a new basis f,,..., f, of V. The linear transformation v vx is represented by
a matrix T~ p(x)T , where e, = z:;l];j f; - So we get a representation x> T - p(x)T that
is equivalent to p.

An L -module is called irreducible if it has no submodules except itself and 0 ; otherwise
it is said to be reducible.
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An L-module V' is called decomposable if there are submodules V;,V, #0 of V' such
that V' =V, @V, ; otherwise it is said to be indecomposable.

Proposition 2.2. L is itself an L -module under the map Lx L — L:(x,y) [xy].
This is the adjoint L -module; we define ady: L — L by (ad y)x = [xy].

Proof. It is sufficient to show that for all x,y,zeL, [z[xy]]=[zx]y]-[[zv]x]. This

follows immediately from the Jacobi identity and the anticommutativity of Lie
multiplication.
|

A derivation of a Lie algebra L is a linear map D:L — L such that forall x,ye L,

D[xy] = [Dx,y] + [x,Dy].
Proposition 2.3. Let x € L. Then adx is a derivation of L.

Proof. Linearity is clear. We need to check that (adx)[yz]=[(adx)y,z]+[y,(adx)z]. This

is true if and only if the Jacobi identity is true.
]

Let V' be an L-module, W a subspace of V' and H a subspace of L. We define WH to
be the subspace spanned by wh forall we W, he H .

If W is a submodule of V, V/W is itself an L-module under the action
(W +v)x =W +vx for veV,x e L. This action is well-defined because

Wv=W+vVIx=v-—veW=>v-V)xeW =W +w=W+vx.
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3. ABELIAN, NILPOTENT AND SOLUBLE LIE ALGEBRAS

A Lie algebra L is abelian if [LL]=0, i.e. [xy]=0.
Define L' = L and inductively define L' = [L"L].

Proposition 3.1. Foreach ne N, L' < L.

Proof. It is sufficient to show that if H,K < L then [HK]<1 L.Let xeH,yeK,zeL.lIs
[y ] e[HK]?

[xyle]=~lyzbe] = [xy]
But y,[yz]e K and x,[zx]e H so [[HK]L]c [HK].

Clearly L' = L < L . If we assume inductively that ' < L then the above workings show

that L' = [ ”L] < L, and the result follows.
|

Proposition3.2. L=L' > L’> ' >...

Proof. Foreach n, ' = [L"L]g L" since L' < L.

L is nilpotent if there is an n € N such that L' =0.

Clearly every abelian Lie algebra is nilpotent as L* =0

Example. Let L be the Lie algebra of upper-triangular n x n matrices with zeroes on the
principal diagonal; dim(L)=1n(n—1); L is a subalgebra of [M,]. Define subspaces H,

2
by requiring that elements of /H, have zeroes on and below the (z’ - l)th diagonal above

the principal diagonal.

Lie multiplication shows that [H,,L]c H, ,. We show that L' ¢ H, by induction on i. If
i=1then L=L'=H,. Assume L' c H, for i=r. Then

Lr+1 — [LrL]
clni]
cH,.,

In particular, L' < H, =0, so L is nilpotent.

-10 -
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Proposition 3.3. For all m,n>1, [L’”L”]g L,

Proof. Use induction on n. If n=1 then [L’”Ll]:[ '”L]: ™", Assume for n=r and
consider n=r+1:

[rr)=[rlrL]

k]

c [[LL’" ]L’ ] + [[L'”L’ 1L] by the Jacobi identity
So

[LerH]g [Lm+1Lr]+ [[L’”L’]L]
- Lm+l+r + [Lm+rL]

cC Lm+r+1

We now inductively define another sequence of subspaces of L :

The 1) are all ideals of L,so L' 1%, s0 L=1" 51" 51¥ 5 ...,
We say that L is soluble if there is an n € N such that =0,

Proposition 3.4. (i) L") = [*".
(ii) Every nilpotent Lie algebra is soluble.

Proof. (i) Inductionon n:if n=0 [=p=1" Assume for n=r:

7+ — [L(")L(")]
]

2r+l
clL

(ii) Suppose L is nilpotent. Then there is an n such that I*' =0. By (i) [ =0 also, so

L 1is soluble.
[ |

-11 -
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Example. Let L be the set of all #nxn matrices with zeroes below the principal diagonal.
[LL]c L; L is a subalgebra of [M,]. Define subspaces H, by requiring that elements of

H, have zeroes on and below the i th diagonal above the principal diagonal.

We have that [H,H,]c H,,,. We show that Ve H, by induction on i. If i=0 then

=r= H,. Assume for i=r. Then L) = [L(’)L(’)]g [H,_Hr]g H_ . In particular,
L") < H, so L is soluble.

However, L is not nilpotent. To see this, consider

0 0
o Ao
A= and B = '
/’lnfl 0 /1,1
0 0
0 wAi, 0
0
AB =
lun—l/ln
0 0
0 w4 0
0
BA =
Iun—l/ln—l
0 0
0 4 (/12 - /11) 0
0
[4B]= 4B-BA=
/un—l (//i'n - //i'n—l)
0 0

By choosing the 4, all unequal and the y; suitably we can get any desired matrix

[4B]=

Let K be the subspace consisting of all matrices of this form.

KclkL]c[kL]]c...c[L...L]=C

-12 -
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So K L forall i and K #0,s0 L #0 forall i. Hence, L is not nilpotent.

Proposition 3.5. (i) Every subalgebra of a soluble Lie algebra is soluble.
(ii) Every factor algebra of a soluble Lie algebra is soluble.
(iii) If I <L and I,L/I are soluble then L is soluble.

Proof. (i) Let H be a subalgebra of L. L is soluble so =0 for some n. We show
that HY) < I'”) for all i. This is true for i = 0. Assume it is true for i = 7.

H(V“) — [H(V)H(")]C [L(V)L(V)]: L(V+1)
So H") =0 and H is soluble.

(ii) 7 < L. We need to show that (L// )(i) = (1 + L(i))/ I . This is true for i = 0; assume it for

i=r:

(/1) =(L/1)" (/1))

(r) (r)
— [1+1L , [+1L ]

1+20) 14

1

_ 1+

1

_ 2+
- I

If £ =0 then (£/1)" =1/1, the zero subspace of L/ .

(iii) Suppose 7 and L/I are soluble. L/I soluble <> (L/I)" = 1/I for some m . Lol 1

I

so 1) c . I is soluble so 1" =0 for some 7.
L(m+n) — (L(m))(”) - L(n) =0

So 1" =0: L is soluble.
|

Proposition 3.6. Let H,K be soluble ideals of L. Then H + K is a soluble ideal of L.

Proof. We know that H +K < L. By 1.6, 2K =K K is soluble, so K/(H NK) is
soluble. Hence, (H +K )/ H is soluble. By the previous proposition, since H is soluble,

H + K is soluble.
|

Corollary 3.7. Any Lie algebra L has a unique maximal soluble ideal.

-13 -
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Proof. Since dim(L)<o L certainly has a maximal soluble ideal. Let H,K be two
maximal soluble ideals of L. Then H + K is a soluble ideal. H c H+ K and H is

maximal, so H = H + K. Similarly K =H +K ,so H =K.
|

This maximal soluble ideal of L is called the soluble radical L, usually denoted R. If
R =0 we say that L is semisimple.

L/R is semisimple. For if R'/R is the soluble radical of L/R then since R'/R and R are
both soluble, so is R". Hence R'"c R.So R'=R and R'/R = R/R is the zero subspace of
L/R.

A Lie algebra L is called simple if it has no ideals other than 0 and L.

If dim(L):l then L is certainly simple. There are other simple Lie algebras. If L is
abelian and simple then dim(L)=1, since [LL]=0. If L is soluble and simple and
dim(L)zl then L # [LL], SO [LL]: 0.

If 7 < L then the ideals of L/I have the form J/I for J <L, Jo1.So L/I is simple if
and only if / is maximal.

A composition series of L is a sequence of subalgebras

L=K,oK >..0K,=0

where K., < K, is maximal. The factor algebras K, /K, are all simple Lie algebras and

are known as the composition factors of L.

Proposition 3.8. L is soluble if and only if all composition factors in a composition
series of L are I-dimensional.

Proof. Let L=K, DK, ©...0K, =0 be a composition series. L is soluble, so K, is
soluble, so K,/K,,,
dim(K,/K,,,)=1. Then certainly K,/K,,, is soluble (even abelian). K, , is soluble and
K, ,/K, , is soluble, so K, , is soluble. K, ,/K, , is soluble, so K, , is soluble.

Eventually we see that K, = L is soluble.

is soluble. So dim(K, /K, )=1. Conversely, suppose that

1

" The classification of the simple Lie algebras was completed in the 1890’s by Elie Cartan and Wilhelm
Killing, working independently.

-14-
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4. REPRESENTATIONS OF NILPOTENT LIE ALGEBRAS
We shall first discuss representations of abelian Lie algebras.

Proposition 4.1. Let L be abelian. Then every irreducible L -module has dimension 1.
Every linear map L — C is a 1-dimensional representation of L.

Proof. A 1-dimensional representation of L is by definition a linear map A:L — C such
that A([xy])= A(x)A(y)— A(»)A(x). But the RHS of this equation is zero; since L is

abelian the LHS is always zero, too. So every linear map L — C is a representation of
L.

Let V' be an irreducible L-module and let x € L; consider the linear map V — V',
vi—>vx. Let w be an eigenvector of this map; i.e. w#0 and wx = Ax for some 1 e€C,
where A is the eigenvalue. Let W = {v eV |w=2Av }, the eigenspace. W is a subspace
of V. Since w=0, W # 0. We shall show that 7 is a submodule of V.

LetveW,yelL.

(vy)x = (vx)y + M = (vx)y = (/Iv)y = Z(vy)

L ;belian

So vy e W, which shows that W is a submodule of V. But V' is irreducible so V =W .

So vx=Av forall veV . Hence each x € L acts on V' by scalar multiplication. So every
subspace of ¥ is a submodule. Hence dim(V)=1.
]

We now recall some linear algebra.

Let AeM,. Then the characteristic polynomial of A is y(t)=det(t], — 4). For non-

singular T e M,, A and T™'AT have the same characteristic polynomial:

det(tl, -7 AT)=det(T™ (e, - A)T)
= det(T _l)det(tln — A)det(T)
= det(s7, — 4)

If V' is an n-dimensional vector space over C and #:V — V' is a linear map we define
the characteristic polynomial of & to be the characteristic polynomial of any matrix
representing 6.

7(¢) e Clt] factorizes into linear factors:

-15 -
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2(O)=(@-2)"..(t—-4,)" with 4, =4, fori#j.
The A, are the eigenvalues, each with multiplicity m;,.

Question 1: Is there a decomposition of V' into a direct sum of subspaces, one for each
A?

Answer 1: Yes.

There is an eigenvector v, € V with eigenvalue A, 1i.e. 8(v,)= Av,. The eigenspace for 6
with respect to the eigenvalue 4, is

ES,4,)={veV | 6(v)=Av}

=veV [(0-A4Ip=0}
Question 2: Ts dim(ES(6,4,))=m, ?
Question 3: Is V' the direct sum of the eigenspaces of the A, ?

Example. Let dim(¥)=2. Let {e.,e,f be a basis for ¥ and take & such that
0:e e, = 0. The matrix of € is

0 has eigenvalues 0,0. The eigenspace of € with eigenvalue 0 is Ce,, so
dim(ES(6,0)) =1 # 2 = multiplicity of 0.

So

Answer 2: No.

Answer 3: No.

The generalized eigenspace of @ with respect to the eigenvalue A is

-16 -
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GES(0,1,)={v eV | vis annihilated by some power of (6 — 1.1)}

:{veV | HNeNs‘t.(H—l,-I)NVZO}

So, in the above example, GES(G,O) =V.

Proposition 4.2. (The Decomposition Theorem) Let V' be a vector space of dimension n
over C and let 0:V —V be a linear map with characteristic polynomial

with A, distinct and Z:Zlml. =n. Let V, = GES(0,4,). Then
Q) V=Vo.er,

(ii) dim(Vi) =m,;

(iii) OV,) < V.

(iv) The characteristic polynomial of 6|V,- is (t -4 )’"" ;

)V, ={veV | ((9—/1[1)'”"\/:0}.

Proof. The proof (omitted) uses the Cayley-Hamilton Theorem, i.e. that ;((0): V-V

satisfies ¥(0)=0.
|

Theorem 4.3. Let L be a nilpotent Lie algebra and V an L-module. Let y € L and
p(y): V>V :vi>vy. Then the generalized eigenspaces V, of V with respect to p(y)

are all submodules of V' .
Note. This does not hold for arbitrary Lie algebras: we need the nilpotency condition.

Recall. Leibnitz’s formula for differentiation:
n n n—i i
D"(fg)= Z{J(D r\p'g)

where D denotes the action of differentiation (once).
We first prove

Proposition 4.4. Let L be a Lie algebra and V an L-module. Let veV , x,y e L and
a,peC. Then

17 -
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(Kol A =22 o)~y el - 1))

Note. If ¢ = =0 then

(Ko = 211 oty Netad )

Proof. We use induction on 7.

If n=1 then LHS = (vx)y — (@ + #vx and

RHS = v(p(y)-al )+ v(x(ady - Al))
= (v )x — avx +v[xy] - Bvx

By the module axioms, LHS = RHS.

Now assume the result for n=r.

(o)~ + Y =( 1,1 ol aa) o= ) o) -+ £))
=3 plolr)-a) ple o)~ -+ p))

where x, = x(ady — I} . Now

which is

-18 -
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S Mels)-ary elady - 1)

1

We shall call the formula of Proposition 4.4 the Leibnitz formula for Lie algebras.

Proof. (of 4.3.) Consider the map p(y): V'— V. Let V, be the generalized eigenspace of
this map with eigenvalue A,. Let veV, and x e L. To show that vx e V', we require that

() p(y)— A1)" =0 for suitably large N . Apply Leibnitz with e =1, =0

i

() p(v)-A1) =>" (NJV(p(y) —41)" (x(ad )

vel, so v(p(y)— Al )N_i =0 if N-—i is sufficiently large. Since L is nilpotent
x(ad y) =0 if i is suitably large. Thus, if N is suitably large, (vx)p(y)-AI)" =0, and

so vx € V,. Thus, each generalized eigenspace is a submodule of V.
|

Corollary 4.5. If L is a nilpotent Lie algebra and V is an indecomposable L -module
then for all y € L the linear map v vy has only one eigenvalue.

Proof. We know that V' =V, ®@...®V, for generalized eigenspaces V, of p(y). These are

all submodules. Since V' is indecomposable, » =1.
|

Proposition 4.6. Let L be a nilpotent Lie algebra and V an indecomposable L -module.
Let ye L have a single eigenvalue /1(y) on V. Then the map nyl(y) is a I-
dimensional representation of L.

Proof. Let dim(V) =n.Itis clear that y > /1( y) is linear. We must also show that

Ay]= A(x)A(y) - A(0)Alx).

The RHS is clearly zero, so we need to show that the LHS is zero as well. Consider the
trace function:

tr(A) = Z o
= Zeigenvalu@s of A4

- —(coefﬁcient of t"'in )((1 ))
tr(4B) = tr(BA)
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Consider p[xy]: V' — V; this has only one eigenvalue, l[xy].

tr(p[xy]) = nalxy]
tr(plxy]) = tr(p(x)p(y) - p(v)p(x))
= tr(p(x)p(y)) - tr(p(y)o(x))
~0

So nA[xy]=0 and A[xy]=0, as required.
]

Proposition 4.7. Let L be a nilpotent Lie algebra and V an indecomposable L -module.
Let y e Land let /1(y) be the unique eigenvalue of p(y). Define O'(y): V—V by

o(y)=p(y)- 201 .
Then
(i) o is a representation of L ;

(i1) O'(y) is a nilpotent linear map for all y e L.

Proof. (i) We must show that
olxy]=o(x)o(y)-o(y)o(x)
RHS = (p(x) = 2(x)1 N p(y) - 2()1) = (o(y) = 21 N o(x) - 2(x)1)

= p(x)p(y)- p(¥)o(x
= plxy]

= olxy]+ Aoyl

= ofx]

(ii) p(y) has characteristic polynomial (r—A(y))", so o(y)=p(y)-A(y) has
characteristic polynomial

det(t — o(y)) = det((t + 2(»))I - p(»))

=(t+A(y)-A0))

:tn

So, by the Cayley-Hamilton Theorem, a(y) satisfies a(y)" =0.
|

A representation o :L —[M,] is called a nil representation if each matrix o(y) for
vy € L is nilpotent.
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Proposition 4.8. Let L be a nilpotent Lie algebra and o a nil representation of L. Then
o is equivalent to a representation under which each x € L is represented by a matrix
with zeroes on and below the principal diagonal.

Proof. Let V' be an L -module giving representation o . Suppose V is irreducible. L is
nilpotent, so L”" =0 for some m. So VL" =0. We show that VL =0 by descending
induction, i.e. that VI =0 = VL' =0.

Let xe L. o(x) is nilpotent so o(x)' =0 for some k, ie. ((vx)x)...x=0 (with &k
x’s). So there isa veV such that v#0 and vx=0. Let U be the set of all such v; we
claim U is a submodule of V'.Let ueU, yeL.

(uy)x = @y+uh/£]: 0

So uyeU ; hence U is a submodule of V. U#0 and V is irreducible, so U =V".

Hence, Vx=0 forall xe L', ie. VI'=0. VL" =0 and VL. =0=VL"'=0,s0 VL=0.
But in this situation every subspace of V' is a submodule. Since V' is irreducible we have
that dim(V)=1. So x> (0)e [, ].

If the module V' is not irreducible then
V=V,oV>..0V,=0

where each V,,, is a maximal proper submodule of V. V' gives a nil representation, so V;
gives a nil representation; V,/V,,, gives a nil representation of L. But V,/V,,, is
irreducible, so dim(V,/V;,,)=1 and (V,/V,,,)L=0,ie. VLV,

i+l
Choose a basis e,,...,e, of V' adapted to the chain of subspaces, i.e.

V, has basis e,,...,e,,

V, has basis e,,...,e,

V.x <V, so the matrix representing x with respect to this basis has the required upper

triangular form.
|

Corollary 4.9. Let L be a nilpotent Lie algebra and V an indecomposable L -module.
Then we can choose a basis for V such that the matrix representation of x has the form
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i.e. zeroes below the principal diagonal, and all elements on the principal diagonal
equal.

Proof. Follows from 4.5, 4.6, 4.7 and 4.8.
|

Corollary 4.10. Let L be a nilpotent Lie algebra and V an irreducible L-module. Then
dim(V)=1.

We now consider arbitrary L -modules.

Let L be a nilpotent Lie algebra and V' any L-module. A weight of V is a 1-
dimensional representation A:L — C such that there isa ve '\ {0} annihilated by some

power of p(x)—A(x)I forall xe L, where p(x):¥V =V :vis vx.
If A4 is a weight of V' the corresponding weight space V, of V is

V,={veV | vannihilated by some power of p(x)— A(x)I Vxe L}
V', is a subspace of V.

Theorem 4.11. (The Weight Space Decomposition Theorem) Let L be a nilpotent Lie
algebra and V an L -module. Then

(i) V has only finitely many weights;

(ii) V is the direct sum of its weight spaces;

(iii) each weight space is a submodule of 'V ;

(iv) a basis can be chosen for each A-weight space V, such that the matrix

representation on V, has the form

X

Proof. /' may be expressed as a direct sum of indecomposable submodules. Each
indecomposable submodule determines a weight 4 by 4.6. Let W, be the direct sum of

all indecomposable components with weight A. Then V' =@ ,W,. We need to show that
V,=W,.
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Certainly W, cV,. Take veV,; since V=@ W,k we can write v = Zﬂvﬂ forv,ew,.

For some N, v(p(x)-A(x))'=0. So Z#vﬂ(p(x)—ﬂ(x)I)N =0 and each
v#(p(x)—/l(x)])N eW,. So each v#(p(x)—/l(x)l)N =0. Suppose A # i, so there is an
x e L such that A(x)# u(x). By 4.9, p(x) is represented on W, by a matrix of the form

Choose x € L such that A(x)# s(x). Then the matrix of p(x)— A(x)I is non-singular on
W, . So the matrix on (p(x)=A(x)I)" on W, is non-singular. So

So v, =0 forall u#1.Sov=3 v, =v, Hence veW,,s0 V, cW,,s0V, =W,.

(1) V,#0=W, #0 so A is one of the finite number of weights in our decomposition of
V. So there are only finitely many weights.

() V=e,W,and V, =W, so V=,V,.
(1i1) ¥, =W, is a submodule of V.

(iv) Follows from 4.9.

The decomposition V' =®,V, is called the weight space decomposition of V.
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5. CARTAN SUBALGEBRAS

Proposition 5.1. Let L be a nilpotent Lie algebra. Then the adjoint representation of L
is a nil representation.

Proof. The adjoint representation comes from the L-module L itself, adx: y+> [yx]. If
yeL then we have [yx]e I*, [[yx]x]e I’ and so on. But L is nilpotent, so L" =0 for

some meN. Le., [[yx]x...x] (m—=1 x’s)is zero. So (adx)"" =0; adx is nil.
|

The converse is also true.

Theorem 5.2. (Engel’s Theorem) If L is a Lie algebra for which the adjoint
representation is a nil representation then L is nilpotent.

Proof. Suppose not. Choose a maximal nilpotent subalgebra N of L. [LN ]g L, so we
can regard L as an N -module. [NN]c N, so N is an N -submodule of L. Let M be
an N -submodule of L containing N such that M /N is an irreducible N -module. Since
N is nilpotent, dim(M/N)=1 by 4.10. So dim(M )=dim(N)+1.

L gives a nil representation of L, and so L gives a nil representation of N . So M gives
a nil representation of N . So M/N gives a nil representation of N, n+> (a), nil if and

only if a=0. So (M/N)xcN/N for all xeN. So [MN]cN. Since
dim(M )= dim(N)+1, M = N + Cm . Hence,

[MM]=[N +Cm, N + Cm]
c [NN]+[NCm]
cN+N
=N
M

Thus, M is a subalgebra of L. Since [NM]< N, we also have that N <M .

We know M? < N . We shall show that for each i > 0 there exists an integer n, such that
M" < N'. We use induction on i. If i=1 take n,=2, since M’ < N. Assume the

statement is true for i = 7. Then we have an n, such that M" < N".
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Mnrﬂ — [M””M]
=M N +Cm)
<M N]+ M adm
< [N'N]+ M7 adm
c N+ M" adm

We now show by induction on j that M"*/ < N"'M" (adm) . This is true for j=1;
assume it for j =k :

M < N+ M (adm)
M o [NVH’M]_’_ [Mn, (adl’)’l)k,MJ
NaM=N"<aM=|N" M|c N

So M"* < N™"'M" (adm) .

The adjoint representation of L is nil, so (adm)j =0 for large j. So, for such j,

M" < N, so there exists an n, such that M" < N".

N is nilpotent, so N =0 for some », hence M"™ =0. So M is nilpotent, which is a

contradiction. So L is nilpotent.
|

We now consider arbitrary Lie algebras. Consider elements x e L “as far as possible”
from 0, in that ad0 has all eigenvalues 0 .

We say that x € L is regular if adx: L — L has as few eigenvalues zero as possible.
Example. Let L={A4e[M,]| tr(4)=0}. dim(L)=3. Basis of L:
0 1 1 0 00
e = , h = , f =
0 0 0 -1 1 0
[he]=2e, [hf]=-2f, [ef]=h
x € L has the form ae+bh+cf for a,b,ceC.
[ex]= —2be + ch
[hx]=2ae—2¢f

[fc]=—ah + 2bf

The matrix of adx with respect to the basis (e, f,%) is
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-2b ¢ 0
2a 0 -2¢
0 —a 2b
This has characteristic polynomial
t+2b —c 0
-2a t 2¢ |=(t+ 21))(12 —2bt - 2ac)+ 2a(~ ct + 2bc)
0 a t-2b

= —2bt* = 2act + 2bt* — 4b*t — 4abc — 2ach + 4abc
= — 4t(b2 + ac)

So the multiplicity of zero as an eigenvalue is

1if B> +ac#0
3is b*+ac=0

a b

c —a

b
So [a ] is regular if and only if #0.

c —a

Lemma 5.3. Let M be a subalgebra of L. Then the set of all x € L such that [Mx] M
is a subalgebra N (M) containing M, and M <N (M). Moreover, N (M) is the
largest subalgebra in which M is an ideal.

Proof. Easy — see Exercise Sheet 1.

We call V(M) the idealizer (or normalizer) of M .

Theorem 5.4. Let x be a regular element of L. Let H = GES(adx,0). Then
(i) H is a subalgebra of L

(ii) H is nilpotent;

(iii) H=N(H).

Proof. (i) Let y,z € H ; we need to show that [yz]e H . By Leibnitz,

[Jadx) = z;’_o[’l’_’j[y(adx)"f,z(adx)f]
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yeH,so y(adx)™ =0 if n—i is large. ze H, so z(adx) =0 if i is large. Hence,
[yz)adx)' =0 for large n. So [yz]e H, and H is a subalgebra.

(iii) We show that H = N'(H). If ze N'(H) then [Hz]c H. Now x e H since [xx]=0.
So [xz][zx]e H. So [zx] is annihilated by some power of adx. So zeH, so
H2N(H), hence H=N(H).

(1) We show that H is nilpotent by Engel’s Theorem, i.e. we show that the adjoint
representation of H is nil. Let dim(Z)=n, dim(H)=1. Choose a basis e,,...,e, of H

and extend to a basis e,...,e, of L. Let ye H, y=A4e +...+ e, A4, €C. Consider
ady:L— L. H is invariant under ady since H is a subalgebra. Hence we also have
ady:H —>H and ady:L/H —> L/H .

Let y,(z) be the characteristic polynomial of ady on L; let y,(¢) be the characteristic
polynomial of ady on H;let y,, (t) be the characteristic polynomial of ady on L/H .

We claim that y, ()= z,, (t);(L/H (t). ady: L — L has a matrix of the block form

Given that y=Ae +...+ 4, how do the coefficients of ;(L(t), ;(H(t) and ;(L/H(t)
depend on the A, ? The entries in A4 are linear functions of the A,. The coefficients in

XL (t) etc. are polynomial functions of the 4, .

Let 7, (t): by +bt+byt’ +.... We claim that b, is not the zero polynomial, for in the
special case y = x b, is non-zero. Let y,,(t)=¢" (ao +tat+at +.. .), where a, is not the
zero polynomial. We know that m </ since y,,(¢) has degree /. So y,(t)=1"(ab, +...)
and aq,b, is not the zero polynomial. Choose A,,...,4, such that a,b, # 0. For this » we

have that ad y has eigenvalue 0 with multiplicity m . So, by the regularity of x, m>/;
hence m=1.
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So y,(t)=1(a,+...) has degree [, and so is a multiple of ¢'. Hence y,(¢)=¢' since
characteristic polynomials are monic. By the Cayley-Hamilton Theorem, ady: H > H

satisfies (ad y)l =0, so the adjoint representation of H is nil.

Hence, by Engel’s Theorem, H is nilpotent.
|

The generalized eigenspace of adx with eigenvalue zero where x € L is regular is called
a Cartan subalgebra of L .

Any two Cartan subalgebras of L have equal dimension; this is called the rank of L.
Any Cartan subalgebra is nilpotent and is its own idealizer.

Example. Let L={A4e[M,]]| tr(4)=0}.

<o 2

is a regular element of L. H will be the Cartan subalgebra given by ad# . dim(H ): 1.

So
a 0
HzChz{( j ae(C}
0 —a

In general, let H be a Cartan subalgebra of L. Then [LH ]g L, so we can regard L as

an H -module and decompose L as L =®,L,, where the L, are the weight spaces of L

as an H -module.

Consider the special case 41 =0,1.e. 0: H - C. L; is the 0-weight space.
Proposition 5.5. L, = H . Thus, 0 is a weight of H on L.
Proof. By definition,
L,= {y el | (adx)"y = 0 for some k and all x € H }
But H is nilpotent, so H" =0, so [yx]r...x] (with =1 x’s)is zero. So H c L,.

Now suppose if possible that H #L,. Then L,/H is an H-module. By 4.11 the

representation of H on L,/H can be given by matrices

-28 -



MAA453 LIE ALGEBRAS

Z

So there is a non-zero element of L,/H that is annihilated by all z € H . So there exists a
yeL,\H such that [yz]e H for all ze H. Hence ye N(H). But H=N(H), so

vy € H , a contradiction. Hence H =L, .
|

Hence we have the Cartan decomposition of L as
L=H®@®,,,L,)

The non-zero weights are called roots. Let @ be the set of all roots — a finite set. Then
L=H®(®,,L,)

By Lie multiplication we know that [HH ] c H and [LQH ] clL,.

Proposition 5.6. Let a, f € ©. Then

() [LLCL, , if a+Bed,

(i) [LLylcH=L,if a+ =0,

(iii) [L,L;1=0if a+ & D and a+ [ #0.

Proof. (i) Let ye L,, ze L,, xe H . By Leibnitz,

DzNadx—(e)+ pa)) = zj{o(fj)[y(adx o)1) 2(adx — AI)]

velL,,so y is annihilated by large powers of (adx —a(x)] ); similarly z is annihilated

by large powers of (adx— B(x)I). So [yz)adx—(a(x)+B(x))I)' =0 for large N.
Hence, b/z] €L, 4.

(i) If a+B=0, [yz]eL,=H by5.5,s0 [LL |cH.

(iii) If o+ & ® U{0} then we deduce that [yz]=0, otherwise there would be a non-

zero element in the (o + f)-weight space.
|
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Consider [LaL_a] cH for ae®, and p:H —>C. Consider the restriction
p:L,L ]->C.

Proposition 5.7. Let o € ®. Consider the subspace [LaLfa]g H.Let fe®. Then [

restricted to [LL ] is a rational multiple of o .

a —a

Proof. If —a¢® then L , =0 and there is nothing to prove, so assume —a € ® . Let
f € @ and consider the functions

=20+ p,—a+p.p.a+ f2a+ p,...,

all linear functions on A . Since @ is finite there exist integers p,q such that

—-pa+p,...—a+p,.B,a+p,....qa+ f

are roots but —(p+1)a+ B and (g+1)a + B are not. If —(p+1)a+ B =0 the result is
clear; similarly if (q + l)a +f=0. So we can assume that —(p + l)a +#0 and

(g+1)a+p=0.

Let M =L D...0L M is a subspace of L. Take yelL,, zeL_,. Then

—-pa+pf o qa+p
[yz]leL,=H .
Madyc M since ady takes L, , t0 L, 5, and L, , toO.
Madzc M since ady takes L, , to L, , and L . ;5 toO.

Let x=[yz]e H; Madx c M by the above. We now calculate tr,,(adx) in two different
ways:

tr,, (adx)=tr,, ad[yz]
=tr, (ad yadz —adzady)
=tr,, (ad yadz)—tr,, (adzad y)
=0

adx actson L, , as

1

i+ )x) *

0 (i + B)x)

by 4.11. Hence,
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tr, (adx)=(ia+ B)x)dim(L,. ,)
So
tr,, (adx) = z L (adx)

=>" — (i + ,B)(x)dlm(Lmﬂ)
= a(x)z l.q?p i dim(l‘ia+ﬂ )"’ ﬂ(x)z ,i,p dim(l‘ia+ﬂ)

Equating the two traces gives

,B(x)z [q?p dim(LwHﬁ) —a( )z [q? i dlleMﬂ

>0

And so

So there exists an 7, , € Q such that f=r, .a on L]
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6. THE KILLING FORM

We define a map LxL — C by (x,y)l—) tr(adxady). Define <x, y> = tr(adxady). The
map (x, y) — <x, y> is called the Killing form.

Proposition 6.1. (i) (-,-) is bilinear;
(ii) <-, > is symmetric,
(iii) <-, > is invariant, i.e. <[xy],z> = <x, [yz]> forall x,y,ze L.

Proof. (i) Easy.

(i) Follows from the identity tr(4B)=tr(BA).

(iii)

<[ vl > tr(ad[xy]ad z)
= tr((ad xad y —ad yadx)ad z)
=tr(adxad yadz)—tr(ad yad xad z)
= tr(adxad yadz)—tr(adxadzad y)
= tr(ad x(ad yad z —ad zad y))
= tr(ad xad[yz))
=(xDz)

The Killing form is called non-degenerate if <x, y> =0 Vyel =x=0.
The Killing form is identically zero if <x, y> =0 Vx,yel.

Proposition 6.2. Let I <L and x,y e l. Then <x,y>[ = <x,y>L. Thus, the Killing form of
L restricted to I is the Killing form of I .

Proof. Choose a basis of / and extend to a basis of L. With respect to this basis, since /
is an ideal, adx is represented by a matrix of the block form

4 0
4, 0

Similarly, ad y is represented by
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B 0
B, 0

AB, 0

4,B, 0
Thus, tr(adxady)=tr(4,B,). But 4, is the matrix of adx on / and B, is the matrix of
ady on /. Thus,

So adxad y is represented by

<xay>1 =tr(4,8)= <x’y>L ‘

u
For any subspace M of L define the perpendicular space M by
M*={xeL|{(xy)=0VyeM |
M™ is also a subspace of L.
Lemma6.3. [<L= [ <L.
Proof. Let xe I and y € L ; we show that [xy]e I*. Let ze 1.
[)2) (a0
[yz]el, xeI*.Hence [xy]el*.
m

In particular, L' < L :

L ={xeL | <x,y>:0VyeL}
So L" =0 iff (,-) is non-degenerate; L* = L iff (,-) is identically zero.

Proposition 6.4. Let L be a Lie algebra with L#0, L’=L. Let H be a Cartan
subalgebra of L. Then there is an x € H such that <x,x> #0.

Proof. Consider the Cartan decomposition of L as an H -module:
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L=®,L,
L= [LL]: [@ﬂ LZ’®# L/l]: Zijy[l‘ﬂl‘/t]

Now [LﬂLﬂjg L, , by5.6,where L, =0 if A+ u is nota weight. Now L, =H, so,

since I? = L, we have
H= Z A [L/lL—Z] = [HH] + z aed [LaL_a]

Now L is not nilpotent since I’ = L, but H is nilpotent, so H # L. So there exists a root
P e®. [ isal-dimensional representation of H, f#0. f vanishes on [HH ] since if

x,yeH then )= B(x)B(y)-p(r)B(x)=0.So0 H =[HH].

Hence, there exists an a € ® with [L,L_]# 0. In particular, L , #0. Also, B does not
vanish on [L,L _,]. Choose xe[L,L_,] such that p(x)#0. By definition,
<x,x> =tr(adxadx). adx actson L, by

Ax) 0
0 Ax)
by 4.11. So (adx)* acts on L, by
Ax) 0
0 Ax)

So <x,x> = Z:Adim(L/1 JA(x)’ . However, by 5.7 there exists an 7., €Q such that
Mx)=r, ,a(x) since xe[L,L,]. So (x,x)=alx)) dim(L,);,. In particular,
Blx)= rﬂ,aa(x). Now A(x)#0,s0 a(x)=0 and o %0.S0

(x,x)=a(x)y ldim(Lz )i
#0 >0
So <x,x> #0.

Theorem 6.5. If the Killing form of L is identically zero then L is soluble.
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Proof. Use induction on dim(L). If dim(L)=1 then L is certainly soluble. If dim(Z)>1,

L’ # L by 6.4,and I’ < L. The Killing form on L’ is the restriction of that on L, and so
is identically zero. dim(L2)< dim(L); by induction I? is soluble. L/L* is abelian, and so
soluble. Hence L is soluble.

|

Note. The converse is not true. Consider a Lie algebra of dimension 2, basis {x, y}, with
bo]=x.

So <y,y> = tr((ady)z): 1.
For which Lie algebras is the Killing form non-degenerate?
Let R be the soluble radical of L. Then L is semisimple if and only if R =0.

Theorem 6.6. The Killing form on L is non-degenerate if and only if L is semisimple.

Proof. Suppose the Killing form on L is degenerate. Then L"# 0. L" < L by 6.3. So the
Killing form of L restricted to L" is the Killing form of L". Hence, the Killing form of
L* is identically zero, since x,y € L' = (x,)=0. Hence, by 6.5, L" is soluble. L* is a

non-zero soluble ideal of L, and so L is not semisimple.

Conversely, suppose L is not semisimple. Then R # 0, so
R=RY SRV 5. ..R¥VSR¥ =0

Let [ = R(k_l); I#0 but />=0,and / < L. Choose a basis of / and extend to a basis of
L.Let xel and y € L. With respect to this basis, adx: L — L has matrix

50
5 5)

ady: L — L has matrix
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So adxady: L — L has matrix

0 0
AB, 0
Hence <x, y> = tr(adxad y) =0.Thus / c L". Thus L" # 0, which implies that the Killing

form is degenerate.
|

Suppose L,,L, are Lie algebras. We can define the direct sum L @ L, to be the set of
pairs (x,,x,)e L xL, with [(x,x,)y,.0,)]= (¥ }[x,y,]). Similarly, we can define
L®.®L,.

The 1-dimensional Lie algebra is simple, and is called the #rivial simple Lie algebra.

Theorem 6.7. A Lie algebra is semisimple if and only if it is the direct sum of simple
nontrivial Lie algebras.

Proof. Let L be a semisimple Lie algebra. If L is simple L is nontrivial and there is
nothing to prove. So assume L is not simple. Choose a minimal non-zero ideal / < L,

I# L.Consider I*: I* <L as well.

xe]l<:><x,y>=0 forall yel.

The Killing form is non-degenerate on L. This gives dim(l ) linearly independent

conditions on x, since the form is non-degenerate. So dim([ L): dim(L)—dim(7) by the
Rank-Nullity Formula.

Now consider / "I*. I NI is an ideal, so the Killing form on / N /" is the restriction
of that on L. But x,yelnI*=(x,y)=0.So INI" is soluble by 6.5. Since L is

semisimple, / NI =0.

dim(7 + 7*)=dim(7)+ dim(I* ) dim(7 ~ 1*)
= dim(7)+ dim(7*)
=dim(L)

SoL=I+1",and InI"=0,s0 L=1@ " as a direct sum of subspaces. Let x € / and
yel". Then [xy]e|lI*|cTAT* =0.S0o L=1®1I" as a direct sum of Lic algebras:

[a+b,a+b']=[aa’]+[pb']
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We now show that 7 is simple. Let J < 1.
[L)=[ur)+ ot )=o) c 7

So J is an ideal of L contained in /. But / is minimal, so either J =0 or J=1.
Hence, 7 is simple.

We now show that /" is semisimple. Let J be a soluble ideal of /= .
L) =)+ o |=ort | v
Thus, J is a soluble ideal of L. Since L is semisimple, J =0, and so /" is semisimple.

So L=1®I", I simple and /- semisimple. By induction, /" is the direct sum of
simple nontrivial Lie algebras. Hence, L has this property.

Conversely, let L=L ®...®L,, where each L, is simple and nontrivial. L, 1is

semisimple, and so its Killing form is non-degenerate by 6.6. Foreach i, L, <L.If i # j
and x,el;,, x,el;, then <xi,xj>=O. For if yelL then yadx, =[yx]elL;
yvadx; =[yx;]eL;. So yadxadx, =[[yx]x;]Je,"L;=0. Thus adx;adx; =0, so
tr(adxi adxj): 0,so <xi,xj> =0.

We show L =0. Let xel', x=x+...+x,, x,eL. Let y elL. Then
<x,yi> = <x,.,yi> =0, since xe L. So <xl.,y,.> =0 for all y, € L,. This implies x, =0 since
the Killing form on L. is non-degenerate. So x =0, and so L" =0. Hence the Killing

form on L is non-degenerate, and so L is semisimple.
|
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7. THE LIE ALGEBRA sl (C)
st,(C)={4e[m,]| r(4)=0}
sl,(C) is an ideal of the Lie algebra [M, ]=gl,(C).
Theorem 7.1. sl,(C) is a simple Lie algebra.

Proof. Every ideal of sl (C) is an ideal of [M,]. We shall show that if 7 <[M,] and
Ic sl (C) then I=5[(C)orI=0.

Let I be a non-zero ideal of [M, ] contained in s[,(C). Let x € 7\ {0}. Then

xe Zp,qququ, X, e C not all zero,

where £, is an nxn matrix with 1 in the ( p,q)th position and zeroes elsewhere.

Case 1: Suppose Ji # j such that x; # 0. Then

[E,x]= quiniq - prpiEp[ el
[EXIE;]=x,E, +x,E, el

jitji

x;E;, —x,E,1=2x,E, -2x,E, €l

Jiji Ji=ji

[En‘ -E

i’

So4x E. el, X; #0,s0 Eé./. el.

7]

Case 2: Suppose x;, =0 Vi# j.Then x = sz

oL s prpp =0, so not all the x,, are

equal. Suppose x; # x; .
[xE;]= (v, - Y )Eii el
So E; el.

So in either case E; el for some i# j. Let g#i,j. Then [E

EJ=E, el.So I
contains all £, with g#i. Let p#i,q. Then [E, ,E 1=E, €l.So E, el for all

p#q.¥Yor p=q,[E, . E,1=E, —E, el.Sol=sl . Hence, 5[,,(@) 1s simple.

pq’
]
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It is easy to see that dim(sl (C))=n*>—1; assume n>2. We now find a regular element
of sl,(C).

Proposition 7.2. Let

with Zi/ll. =0and i# j= A4 #A,. Then x is regular.

Proof. Take a basis of sl (C):
{Eij | i # J }U JlEll _EzzﬁEzz _E33""’En—l,n—l _Enn}

Consider the matrix of adx with respect to this basis:

[E,x]=(4, 4 )E, for i# j
[E,; — E, x]=0

+1,i+12

So the (nz - 1)>< (n2 —~ 1) matrix of adx with respect to this basis is

The characteristic polynomial is t”_IH#j(t—/ii +/1j); the multiplicity of zero as an

eigenvalue of adx is n—1.

Now let y € sl ((C) ad y is similar to a matrix in Jordan canonical form, say

Jml (ﬂl) 0

where J, (1) is the m x m matrix
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u o1 0
U

1

0 u

J,(1)=pd, +J,, where J, =J (0). JX has 1’s on the k th diagonal above the principal
diagonal and zeroes elsewhere. We claim that J, (#) commutes with any matrix of the

form af, + fiJ, + fJ2 +..., s0 (x) commutes with all matrices of the block form

al IB 1 0
a 0

B
0 a,

o, B0

al"
! y;
0 a,

These matrices form a vector space of dimension m, +m, +...+m, =n.

I

Assume ma, +...+m,a, =0, i.e. the matrix is in 5[,1((:). We have a vector space of
dimension n—1. All these matrices lie in the zero eigenspace of ad y, so the multiplicity
of zero as an eigenvalue of ad y is at least n—1.

Thus, x is regular.
|

Proposition 7.3. The subalgebra of diagonal matrices in sl, (C) is a Cartan subalgebra.

Proof. Let

A #A fori#j, Z,ﬂi =0. x isregular. Let
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dim(H)=n—1.1If ye H then [yx]=0, so H < ES(adx,0)c GES(adx,0). But
dim(H )= n —1=dim(GES(ad x,0)).

Thus, H is a Cartan subalgebra of sl (C).

Proposition 7.4. Let L = sl (C) and let H be the diagonal subalgebra. Then

L=H®(®,,CE,)

i#j

is the Cartan decomposition of L with respect to H .

Proof. Clearly L=H @ (@i# i CEU) as a direct sum of vector spaces. Let
h=AE,+..+AE €H.

Then [Ei].hJ= (ﬂj -4 )Ey. -So CE| is an H -module giving a 1-dimensional representation

A 0
B A, — 4 #0 since i # j .
0 A

n

So this 1-dimensional representation of H is a weight and CE|; lies in the weight space.
dim(#)+ Y dim(weight space) = dim(Z) = dim( )+ " dim(CE, )

So CE, is the full weight space, giving L=H (-D((—B (CEI.J.) as a direct sum of Lie

algebras.

i#]
]

Summary. s (C)=[nx n matrices of trace0]. sl (C) is simple.
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40
- i=1 1

0 A

n

is a Cartan subalgebra. L=H ® (ED# ; (CEU) The roots are

A 0
- A, =4 fori#j.
0 A

n
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&. THE CARTAN DECOMPOSITION

Throughout this chapter, let L be a semisimple Lie algebra and H a Cartan subalgebra
of L.

L=®,L,, A weights — the Cartan decomposition

Proposition 8.1. If xe L,, yeL

w’

A#—u then <x,y>:0.

Proof.
<x,y> =tr(ad xad y)
L,adxc L,

L,adxadyc L

V+A+u

So if A+u#0 then V+A+u#V . Choose a basis of L adapted to a Cartan
decomposition. adxady is then represented by a block matrix with zero blocks on the
diagonal:

So <x,y> =tr(adxady)=0.

Proposition 8.2. If « € ® then —a € ®.

Proof. Suppose if possible that —ae¢®. Then L ,=0 and L,#0. Let xelL,.
<x,y>:0 for all yeL,, for all 4. Hence <x,y>=0 for all yeL. But <,> is non-

degenerate, so x=0. Thus L, =0, a contradiction.
|

Proposition 8.3. The Killing form of L remains non-degenerate on restriction to H , i.e.
if xe H and <x,y>=0f0rall veH then x=0.
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Note. We are saying that the Killing form of L restricted to H is non-degenerate, not
that the Killing form of H is non-degenerate. In fact, the Killing form of H is
degenerate since H is nilpotent.

Proof. Let x € H satisfy <x, y> =0 forall y e H. We also have <x,y> =0 forall yeL,,

A#0,by8.1.S0 (x,y)=0 forall yeL.So x=0.
|

Proposition 8.4. [HH ] =0, ie H isabelian.

Proof. Suppose x [HH ] andlet ye H .

<x,y> =tr(adxad y)
L=®,L,,each L, an H -module.

On L, we have adx represented by

Ax) *
0 Ax)
and ad y represented by
Ay) *
0 Ay)
Hence, adxad y is represented by
Aaly) *
0 )

So <x,y> =tr(adxad y)= zﬂdim(Lﬂ JA(x)A(y). Let h,h, € H . Then

Al | = Ak )20, )= A, )A () = 0
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Since A4 is a l-dimensional representation. Hence ﬂ(x)zO for all xe[HH ], SO
<x,y>:0 for all ye H. Since <,> is non-degenerate, x =0. So [HH]zO; ie. H is

abelian.
|

Let H" denote the dual space of H, Hom(H,C). Then dim(H *):dim(H ). We can
defineamap H > H", h—> h", by h*(x):<h,x> for xe H.

Lemma 8.5. The map hv> h" is an isomorphism of vector spaces.

Proof. The map is clearly linear. Suppose # is in the kernel of this map, i.e. A" =0. Then
<h,x> =0 for all x € H . Since the Killing form is non-degenerate, # =0. So the kernel is

trivial.

dim(image) = dim(H ) — dim(kernel) = dim(H ) = dim(H*)

Let a c®. Then a e H", so there is a unique %, € H such that a(x)= <ha,x> for all
xeH.

Proposition 8.6. The h,, as defined above, and taken over all o € ®, span H .

Proof. Suppose not. Then there is an x € H, x # 0, such that <ha,x> =0 foreach a e ®.
Hence a(x)=0 forall a e®.Let ye H .

(x,yy=tr(adxady)="" dim(L,)A(x)A(y)

Since /1(x) =0 for all weights 4, <x, y> =0 forall ye H.So x=0, a contradiction.
|

Proposition 8.7. For a e ®, h, €[L,L ], a subspace of H .

Proof. Consider L, as an H -module: it contains a I-dimensional submodule Ce,,
e, 20. [e,x]=a(x)e, for xe H. Let yeL_,. We show that [yea]:<y,ea>ha. To see
this let z=[ye,]-(y,e,)h, and let x € H .
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(ve.} )= (v.e. )b, x)
(.lex])—(y.e,)al(x)
a(x)y.e,)—(y.e,)a(x)

0

(z.%)

So <z,x> =0 forall xe H,s0 z=0.So [ye,]= <y,ea>ha. We can find y € L , such that
<y,ea> #0. If not, e, is orthogonal to L_, and to each L, with 1 #-a, so e, € L", so

e, =0, a contradiction. Choose such a y, then

haz{ Y e}e[L_aLa]

(v.e.)

Proposition 8.8. Ler a € d. Then (h,,h,)#0.

Proof. Let 5 ® . We know that 4, €[L_,L,]. There exists r « €Q suchthat =71, &
on [L,,XLO,]-

(hyohy) = Blh,) =15 () =7, (Byo,)

a’a

If <h h >=0 then <hﬁ,ha>:0 for all f € ® . But the set {hﬂ | ,Beqb} spans H . Hence

<x,ha> =0 forall xe H . This implies 4, =0, so a =0, a contradiction.
|

Theorem 8.9. If « € ® then dim(L,)=1.
Note. Of course, dim(H )= dim(L,) is not generally 1.

Proof. Let M be the subspace of L given by

M=Ce,®Ch ®L DL, O...

where Ce, is a 1-dimensional H -submodule of L, 6. There are only finitely many
summands since @ is finite. Recall from the proof of 8.7 that there is an e , € L , such

that [e_ e |=h,. Also, forany ye L _, [ye,|= <y,ea>ha .

We first show that M ade, c M :
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le.e.]=0
[haea ] = _[eaha] = _a(ha )ea

Let yeL ,. Then

[yea] = <y,ea>ha e Ch,
[L e ]g L—(i—l)a fori>2

—ia- o

Secondly, we show that M ade , c M .

le.e.. 1=,
[h”‘e’“] = _[e*a’hﬂt] = a(ha )efzx € szx
[Lfmefa ] c L,(M)a for i >1

le.e ]=h,,so Madh, c M. We now calculate tr, (ad/, ) in two different ways.

-a-a

tr, (adh, )=tr, (ade_ ade, —ade,ade_,)=0

tr, (adh,)=a(h,)+0—dim(L_ )a(h,)-2dim(L_,, Jer(h, )-3dim(L_,, )a(h,)—...
=a(h, (1-dim(L_,)-2dim(L ,,)-...)
= (h,.h, (1-dim(L_, )-2dim(L_,, )-...)
Since (h,,h,)#0, 1-dim(L_,)-2dim(L_,,)-...=0. Since —ae®, dim(L_,)>1.

Hence dim(Z_,)=1 and dim(L_,,)=0 for i >2.

So, interchanging o <> —« , we have that for each a € @, dim(La) =1 and dim(Ll.a ) =0
fori>2,ieN.

|
We have the following easy corollary:

Corollary 8.10. I[f a € ®, ma € ® and m e Z then m==1.

Now let o, f € @, [ # ta . Consider

—-pa+pf,...—a+p,B,a+ [0+ p,....qa+ [

There are integers p,g such that all of the above are roots but — (p + 1)0: + £ and
(q + l)a + [ are not roots. This collection is called the & -chain of roots through [ .
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Note that B+(g+1)er, B—(p+ 1) #0,50 Ly, (o0 =0, Ly ), =0. Let

M=L D..0L

—-pa+p qo+p

Choose e,eL,, e, el , such that [e e, |=h

.- We claim that Made, c M,
Made ,c M and Madh,c M .

Lia+ﬂ adea - L(i+1)a+ﬁ
L

ia+p

ade—a < L(i—l)a+,3
So Madh, = M . We now calculate tr,, (ad/, ) in two different ways:

tr, (ad%,)=tr, (ade_ ade, —ade,ade_,)=0
tr,, (adh, ) = Z l:p (ia+ B)h,) since dim(Lmﬁ ) =1.

So X' (ia+B)n)=0: (X7 ik(n,)+ X" pn,)=0.

= (@—@)@lw%)+(p+q+1)<hﬁ,ha>=0
= (%Xp+q+1)<ha,ha>+(p+q+1)<hﬂ,ha>:0
= 2(hyh,)[(hyohy) =P —q

Thus we have proved:
Proposition 8.11. Let o, f € ®, B #*ta. Take the a -chain of roots through [,

—pa+pf,...—a+p,B,a+ f,....qo+ .

Then

Corollary 8.12. If a e ©, (a € @ and £ €C then & =+1.

Proof. If & # +1 set f=&a . Then
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2(hy.hy)
(heohe)

So 26eZ.1f £ €Z then £ =41 by 8.10. If £ ¢ Z then p# ¢ modulo 2. The « -chain
of roots through £ is

=2{=p—q

—-pa+pf,...—a+p,B,a+ p,...qo+ [

But f=%2a, with p and ¢ not both zero. So % appears in the o -chain. This implies
a,% e ®, which contradicts 8.10.

|
Proposition 8.13. Forall o, € ©, <ha,hﬂ> eQ.
Proof. If /3 #+a then by 8.11 (h,.h,)/(h,.h,) € Q. We show that (h,.h,) € Q.
(h,,h,)=tr(adh, adh,)
=2 o Bl
2
:Zﬁe®<ha’hﬁ>
2
1 (. hy)
<haaha>2ﬂe®[<ha,ha>] EQ
So (h,.h,) € Q50 (h,.h,)eQ.
]
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9. THE ROOT SYSTEM AND THE WEYL GROUP

| ac®} spans H, so we can find a subset {hal ,...,hal} that forms a basis for H ;

dim(H)=1.

{n

Proposition 9.1. Let o € @ . Then h, = Zj:lﬂiha, for some p. €Q.

a;’a;

Proof. We know this for x4, €C. Let <h h >:§”. € Q. The matrix = :(fi.) is non-
singular, since if it were singular we would have 7,,...,77, not all zero such that

i
. 1:6; =0. Then

<z j=1 ﬂiha,- ’ha,- > = Zj:lniéj =0

So <z jzlnihal,x>:0 for all xe H. <,> 1s non-degenerate, so all 7, =0, which is a

contradiction.

<ha’hal> = MGyt 1Sy,

<ha’haf[> = WGy + ot Gy

We have / linear equations in / unknowns with a non-singular coefficient matrix, all the
entries of which are rational. Hence, by Cramer’s Rule, there is a unique solution
(1)@

Let H be the set of all ijl,ul.hai , 1, €Q. dimQ(H@)=l. H,, is independent of the

choice of basis; all /, € H,.
Let H be the set of all Z;ﬂiha,- , i, R, dimy(Hy)=1.
Proposition 9.2. Let x € Hy, . Then <x,x> eR,, and <x,x> =0 x=0.

Proof. Let xe Hy, x= Z izl,uiha, .
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() =22 (b, b))
=33 up,uladh, ad, )
=33 un Y, alh, e, )
333 wualn, )
-3, ualn, )

So <x,x> e R and <x, x> > 0. Suppose <x, x> =0. Then forall « € @, Zi,ula(hai )= 0.In

particular, zi,ul.aj(ha[)=0 for j=1,...,[; Ziyi<ha[,ha/_>=ziyi§y =0 forall j. = i1s

non-singular, so g, =0 forall i,s0 x=0.
]

So all h,eHy; dimR(HR)= /. We introduce a total order on Hy: let xe Hy,
X = Z,ﬂiha,. If x#0 we say x>0 if the first non-zero y, is positive; if x #0 we say

x < 0 if the first non-zero g, is negative. We have trichotomy: for each x € H, precisely

oneof x=0, x<0, x>0 is true.

So, fora e ®, h, <0 or h, =0.Define <0 if 1, <0 and a >0 if A, > 0. Define

O = {a ed|a>0 }, the positive roots, and
O ={ae® | a=<0},the negative roots.

Clearly, =0 " U D" .

A fundamental root is a positive root that is not the sum of two positive roots. Let IT be
the set of fundamental roots.

Proposition 9.3. (i) Every positive root is a sum of fundamental roots.
(ii) {h, | @ €11} is a basis of Hy.

(iii) If @, BT and a # B then (h,.h,)<0.

Proof. (i) Let ¢ e ®". If a €Tl we are done. If a g1 the there exist B,y e ®" such
that o = S+ with £,y < « . Repeat to get the result.

(iii) Let «, f €Il with a # . Then o — f ¢ @ since if not

a=(a-B)+por f=(f-a)+a
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so either ¢ or f would be a sum of positive roots. Consider the « -chain of roots
through £ :

B.a+p,....qa+ p

Uhorky)
= W—p—q——q by 8.11.
= (hyshy)<0 since (h,,h,)>0 by 9.2.

(i1) By (i), the s, for o € ® span H . We show the /4, are linearly independent. Suppose

not: then there exist 1, € R not all zero such that

Za,en’uih“f =0

Rearrange this sum, taking all the positive x; to one side. Then

x:,uilhai1 ot h

a;,

z,ujlhaj1 totu;h

g

4 sp1; >0,10,j, distinct for [ISu<r,1<v<s.
Then
<x,x>=</yzilhail oy By by +...+,ujxhajv>30

by (ii1). So x =0, a contradiction.
|

Note. @ can be chosen in many different ways. However, IT is determined by ®" and
®" is determined by IT.

Example. Let L = sl (C). The roots are
A 0
B = A, =4, for j#i

0 A

n

Define @ to be the roots with j >i . Then the fundamental roots are
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A 0

— A

i — A for1<i<n-1

0 A

n

/11' _/11‘ :(/1141 _/11‘)"'(&42 _/1i+1)+"'+(/1j _/77‘—1)

dim(H)=n-1=1, the rank of L.

For each o € ® we define s, : H, - H by

s, is linear and s, (h,)=—h,. The set of x such that <x, x> =0 forms a hyperplane i.c. a

subspace of codimension 1. s, is the reflection of H} in the hyperplane orthogonal to
h

ot

Let W be the group of all non-singular linear maps H, — H, generated by
{s, |ae®}. W is called the Weyl group.|

Proposition 9.4. (i) W is a finite group.
(ii) W is a group of isometries, i.e. for all x,y e H,, weW, <w(x), w(y)> = <x,y>.
(iii) For each a € ® and weW thereis a [ € ® such that w(ha): hy.

Proof. (ii) Let x,y € H. Then

(s, (xhs, () = <x -2 <<Zj,’}z>> B>y =2 <<Z:z: hya>> ha>

() altefhes)  Chexlihes)
= (%)

<ha’h0!> <ha’ha >2
So s, 1s an isometry; so w is an isometry for all we IV .

(ii1) Now consider s, (h ﬁ) :

T After Hermann Weyl.
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So suppose [ # ta . Consider the « -chain of roots through £,

-pa+p,...B...qa+p

g lhety)
sa(hﬂ)_hﬂ—2<hwha>ha

=h,—(p-q)h,
= hﬁ+(q—p)a

Now ,H+(q—p)ae<I> since —p<p—q<gq.So s, permutes the &, for f e . Hence
we W permutes the /1, for € ® . Note that

B+(g-pla+p)=(-pa+p)+(qga+p)

so s, inverts the /; in a given « -chain.

(1) We have a homomorphism from W to the group of permutations of the /4, for

ae®. O is finite, so the image of this homomorphism is finite. If we W is in the
kernel then w(f, )= h, forall & € ® . Since the 4, span H,, w=id. Hence, ¥ is finite.
]

Proposition 9.5. Given any root a € ® there exists a fundamental root o, €Il and a
weW such that h, = W(ha,. )

Proof. Each o € @ has the form a =na, +...+na,, n,€Z.If a e ®" then all n,20;
if ae® then all n,<0. We may assume o e®’ since if ae® then use
h,=s,(h_,). The quantity n, +...+n, is called the height of a , ht(a). We use induction
on ht(a). If ht(e)=1 we are done, so assume ht(e)>1. By 8.12, at least two 1, > 0.

0<(h,h)=>" n(h,.h,)

All n, 20, so there exists i such that <ha, ,ha> >0.Let s, (h,)= hy.
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PP UALY
hﬁ_ha_2<hal,ha>ha
gt
ﬂ_a_2<ha,,hai>al

So ht(,B)< ht(a). Passing from « to S changes only one #,, hence £ has at least one
n;>0,s0 fe®". By induction, f = w'(ha/) for some w'e W and some a; €I1. Thus,

taking w=s, w' eW

ha = Sa[ (hﬁ)z Sa[ Wl(ha/ ): W(ha/ )

Proposition 9.6. The Weyl group W is generated by s,, ,...,s, for I1= {al,...,al }

Proof. Suppose W, is the subgroup generated by {Sa,- | a, ell } To show W =W, we
show s, e W, for all o € ®. The proof of 9.5 shows that &, = w(ha[_) for some ¢; eIl

and some we W . Consider ws, w™' € W,.

ws,, w (ha) =ws,, (hal_ )

I
=
an
s
N—
I
|
=

Let x € H, be such that <ha,x> =0. Then

- (w1, ) () =0
() =0

= Sw(x:ww()

U

-1 _ _
Hence, ws, w =s,.Then s, e W, s0 W =W,.

Example. L = s[,(C); dim(L)=8.

2.

dim(H )
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L=H®CE, ®CE,, ®CE,, ® CE,, ®CE,, ® CE,,

Let
4 0 0
h=0 A4, 0
0 0 A4
[E,h]=(2, - 4 )E,
The roots are
o, h—=> A4, -4 a, h=> A4, -4, a,+o, h—> A4 -4
—a, h—> A, -4, —a, h—=> A4, -4 —a, -0, h—=> A4 -4
(I)z{ial,iaz,i(al+a2)}
H:{alaaz}
Consider the corresponding vectors 4, € H . Let
A 0 0 4 0 0
h=|0 4 O0|eH,h=|0 u O0|eH
0 0 A4 0 0 g

(h,h')=tr(ad had ')
=2(Ay = A Nty — 1)+ 202 = A, Nty — 10,) + 2025 = 2, Yot — )
2(2 Ay 240, + 20, — (/11/12 + A+ Ay + A+ A+ A, ))
= 4(

Aoty + Ao pty + Apt) = 22+ Ay + A Nty + gty + p3)+ 2( A gty + Ao pty + Ao

= 6( Aty + Aty + Ay y15)
= 6tr(hh')

h,, satisfies <ha1 ,h> =a,(h)=4,— 4, s0

S = O
oS O O

Similarly,
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[0 00
h,=—0 -1 0
: 6

0 0 1

:l/\/g and

For x € H, define |x| = 1/<x, x> . With this notation,

h,,

h,,

R

The angle between £, and £, is given by the cosine formula:

(o sh, ) = |, || cosO
0=2r/3
haz ‘ hal +a,
\
| ~
| ~
~
| ~
-
hfal - hal
-~/
~
- |
- |
|
—a,-a, | h—az
W= {1d, S 3Sa, S Sa, »SaySay 3SaSeySay, = Sa,Se S, = Sy +ar, }
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10. THE DYNKIN DIAGRAM

We shall consider the geometrical properties of the 4, for a e @ .

Proposition 10.1. Let o, f € @, S #ta. Then
(i) the angle between a and p is one of

z/6, /4, /3, x/2, 2x/3, 3x/4, 57/6;

(ii) if the angle is /3 or 2x/3, h, and h, have the same length,
(iii) if the angle is 7/4 or 37/4, the ratio of the lengths of h, and hy is V2
(iv) if the angle is 7/6 or 57/6, the ratio of the lengths of h, and hy is V3.

Proof. Let 6, , be the angle between £, and h,. We have

(Bt ) = |hy|cos6,,
= (Byuhy) =By, Yy )eos? 6,

2(hyshy) 2y, )
(hyshy) (hyhy)

=N 4cos’0,, =

By 8.11, both factors on the RHS are integers, so 4cos’ Gaﬂ eZ. 0<cos’ Haﬂ <1, so
0<4cos’f,, <4,s0 4cos’ G, € {0,1,2,3}.

= coszﬁaﬁe{o,i%,i%,ié}
— 0,5 €{\7/2,7/3,27/3,7/4,37/4,7/6,57/6}

hy b hg,h,
4cos’ 0,5 = (22%’]:;)(2 Ehj,hﬁ;j
Suppose 8, is 7/3 or 27/3, 50 4c0s’ 6, =1. 1=1.1=(=1)(-1), so |ha|:‘hﬂ‘.

Suppose 0, is /4 or 37/4,s0 4cos’ 8, =2. 2=1.2=2.1=(-1)(-2)=(-2)(-1). So
hﬂ‘ is /2 times the other.

a’a 2

one of <h h > and <hﬂ,hﬂ> is twice the other, so one of |ha

Suppose 0, is 7/6 or 57/6, so 4cos’6,, =3. 3=1.3=3.1=(-1)(-3)=(-3)(-1). So,

as above, one of |ha hﬂ‘ is /3 times the other.

2
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Proposition 10.2. Let o € @ . Then every « - chain of roots has at most four roots in it.

Proof. Consider the « - chain of roots through S with £ as the first root:

p.oa+p,....qa+ [

By 8.11, 2(h,.h,)/(h,.h,)=~q. The LHS is 0,—1,—2 or 3 by 10.1. So ¢ <3. So the

length of the « -chain is at most 4.
|

Let

and 4= (aij). A is called the Cartan matrix; the a, are the Cartan integers.

Proposition 10.3. The Cartan matrix has the following properties:
(i) for each i, a, =2;

(ii) for i # j, a; € {0,—1,—2,—3 }

(iti) a; =-2=a,=-1; a;=-3=a, =-1;

(iv) a;,=0<a,; =0.

Proof. If i # j then 4cos’f,, =a,a,.

(1) Clear.
(i1) Follows from 10.1, 9.3.
(iii) Follows from 10.1.
(iv) Clear.
|

We incorporate this information into a graph. The Dynkin” diagram is a graph A with [
vertices, one for each fundamental root. If i# j then vertices i,j are joined by
n; =aza, edges, 0<n, <3.The Dynkin diagram may be disconnected, as in

*—0

o—

T After E.B. Dynkin. Also due to H.S.M. Coxeter.
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It splits into connected components and the Cartan matrix splits into corresponding
blocks; off-diagonal blocks are zero:

We define a corresponding quadratic form Q:

[

_ 2
Q(x‘ e "xl)_ i:lzxi N Z 1<i= j<l My XX
Recall the correspondence between quadratic forms on R and real symmetric matrices:
M = (ml./.) symmetric

T _
xMx —Zi’jmijxixj

The matrix of O(x,....,x,) is

R
Ve 2 =y
Sy —my 2

Proposition 10.4. The quadratic form Q(x,,...,x,) is positive definite, i.e. Q(x,,...,x,)>0

and Q(x,,...,x,)=0x, =...=x,=0.
Proof.
4cos’ 0, =a,a;, =n;
2cos0; :_\/”Tj
(B, oo, ) =i o, |c056,
! <h"’f’h“f> X X
Q(xls"'axl): Zi,jleﬁxixj =2 Zih—whai ’Zjh—ha_/ = 2<y,y>

where y= Z Xih, /

y=0,so0all x, =0. The converse is clear.

h,|.

So O(x,....,x)=0. If O(x,....x,)=0 then (y,y)=0, so
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Recall. Any quadratic form can be diagonalized; there exists a non-singular real /x/
matrix P such that PMP" = D, a diagonal matrix. Let y = xP~'; then xMx" = yDy" .

Proposition 10.5. Let M = (m) be an [ x1 real symmetric matrix. Then the associated

quadratic form z m.x.x, is positive definite if and only if all leading minors of M

l/l/

have positive determlnant. (The leading minors are

(m”),(’”“ ’”JM)

my My,

Proof. We use induction on /. Assume the quadratic form is positive definite. If /=1,

M = (mn). my,x> >0< m,, >0. Suppose [ >1. Z _ myx;x; is still positive definite as

it is the original with x, =0. By induction, the first /—1 leading minors of M have
positive determinant; we require that det(M)>0. xMx" =yDy", D diagonal with
entries d,,...,d, >0. Now if PMP" =D,

det(P)’ det(M)=det(D)>0.

Conversely, suppose that all leading minors of M have positive determinant. The same
is true of the smaller (7 —1)x (/1) leading minor. By induction, Zf (M X,X; 18 positive

definite. So we have a diagonal form in new coordinates y,,...,J,:

> mxx, =Y dx? with d, > 0.

I

/ -1 2 2
zi’jzlmy.xl.xj = Zk:ldkxk +2eyx, +...+2e_y,_x, +ex
This may be diagonalized by a further transformation of coordinates:
— i
=yt X

We get d,z +...d,_z}, + fx; . So there is a non-singular P such that

d, 0
PMP" =
dl -1
0 f
det(P) det(M)= fT] .d
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We assume det(M ) >0,s0 f H : d,>0,so f>0. Thus, the form is positive definite.
|

We consider graphs with the following properties:

(1) the graph is connected;

(i1) any two distinct vertices are joined by 0, 1, 2 or 3 edges;
(111) the associated quadratic form is positive definite.

The Dynkin diagram of a semisimple Lie algebra has connected components satisfying
(1)-(ii1). It is possible to determine all graphs satisfying (i)-(iii).

Theorem 10.6. The only graphs satisfying (i)-(iii) are

Al Az A3 Al
[ o—© [ @ L L L]
B, B, B, B,
[ — ] o—@ ®© o— 0 @& »
D, D, D,
o oo o oo o o<:
E, E, E,
F, G,
e—@ & o e—90

Proof. The given graphs clearly satisfy (i) and (ii). We show that they satisfy (iii). We
show O(x,,...,x,) is positive definite by induction on /. If /=1 we have Q(x,)=2x’,

which is positive definite. Suppose / > 1. There is a vertex / such that when it is removed
we have another graph on the list. By induction, Q(xl,...,xH) is positive definite, so all

leading minors of the matrix of Q(xl,. . .,xH) have positive determinant. To complete the

induction we show that the matrix of Q(x,,...,x,) has positive determinant.

Let Y, be a graph of / vertices and y, the determinant of the matrix of the associated

quadratic form. In the case / =1, q, = |2| = 2. In the case / =2 we have
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2 -1
a2:_1 2:3
b=| 2 _*/5—2
2 _\/5 2
c, = 2 _\E—l
2 _\/g ’

Suppose />3. Remove a vertex / joined to just one other vertex /—1 by a single edge.
If Y, is the given graph, let ¥, | be the graph with vertex / removed in this way, and let

Y, , be the graph with vertices / and /-1 removed in this way.
0

= det(Yl): 01=2y,, _(_1)(_ l)yl—z =2y, =V,

Hence:
Type 4, a =2a,_,—a,_,=>a =[+1
Type B, b=2b_,-b_,=b=2
Type D, d,=2a,—a =4
dy=2d,—a,=4

= d, =4 by induction
Type E, e =2d;—a,=3
Type E, e, =2e,—d;=2
Type E; e, =2e;,—e; =1
Type F, fi=2b—a,=1
Type G, g =1

Hence, O(x,,...,x,) is positive definite in each case.

In order to show the converse, i.e. that the graphs on our list are the only possible ones,
we shall first require some additional results.

Proposition 10.7. For each of the following graphs the corresponding quadratic form
O(x,....,x,) has determinant zero.
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ZZ Z} s
A I:I . Etc.
§3 §4 §5 s
>-:- :>—o:- :>0—0—¢:- .. Etc.

a0

>

C, C, C, C
e [ — ) ® e e &€ o ¢ e o - Etc.
D, D, .. .. D,
:>—<: >—< Etc.
E6 7 ES
F, G,
o—O0  — @ o —° e—Oo o

Proof. In most cases we can calculate the determinant as before, but not in types Z, , 5, .

TypeZI 2 -1 -1
-1 2 -1 0
1 _0 since the row
. _ | B sum is (0,...,0)
-1 -1 2
Type C, 0
0 |= —(—ﬁx—ﬁ)’%-l:()
2 -2
0 0 -2 2
Type B, b,=2b,—a>=22-2"=0
Type D, d,=2d,—a’=24-2=0
Type E, e, =2e,—a;,=23-6=0
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Type E, e =2e,—d,=22-4=0
Type E, & =2¢,—e,=2.1-2=0
Type F, fi=2f,—b=21-2=0
Type G, g,=2g,—a,=21-2=0

|
Lemma 10.8. Let Y be a graph in which any two vertices are joined by at most three
edges. Suppose the corresponding quadratic form is positive definite. Suppose Y' is a
graph obtained from Y by omitting some of the vertices, or by reducing the number of
edges, or both. Then the quadratic form for Y' is also positive definite.
We call Y' a subgraph of Y.
Example.

Y=@——®@isasubgraphof Y =@ — @ ®

Proof. The quadratic form for Y is
N 9,2 [
Q(xl" : "xl) - Zi:lzxi B Zlﬁ#jsl My XX -
The quadratic form for Y’ is
' m 2
Q (xl""’xm): i=12xi _Zléi¢_1’5m \lnl;'xixj 4

with m </ and n;<n,. Suppose Q' is not positive definite. Then there exists
(75...,3, )% 0 with Q'(y,....,», )< 0. Consider Qle ,O,...,O). This is

Yom

i=1 Yi = 1<i=j<m 1 Vil| Y s < i=1 Yi — I<ij<m g\ Vil
PINEITED SN AL sAED DPS D SN 0 ot

<2 _ZIS#]‘Sm n; Vi
SQ’(yl""iym)

secey

seres|Vim

,0,...,0)S Q'(yl,...,ym)SO. So Q(xl,...,xl) is not positive definite, a

so Oy,

contradiction.
|
We now return to the proof of 10.6.

Suppose Y is some graph satisfying conditions. (i)-(iii). By 10.7 and 10.8 we know that

~ o~~~ ~ ~ ~

no graph of the form 4,B,C,D,E,F or G can be obtained as a subgraph of Y.
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(a) Y contains no cycles, for otherwise ¥ would have a subgraph of the form Z, )

(b) If Y has a triple edge then Y = G,, for otherwise ¥ would have 62 as a subgraph.

(c) Suppose Y has no triple edge. Then Y can have no more than one double edge, for
otherwise Y has a subgraph of type 5, .

(d) Suppose Y has one double edge. Then Y has no branch point, for otherwise Y has
§, as a subgraph.

(e) If the double edge is not at one end then Y = F,, for otherwise Y has a subgraph I?;
If the double edge is at one end, ¥ = B,.

(f) Now suppose Y has only single edges. Then Y cannot have a branch point with four
or more branches, for otherwise Y has 54 as a subgraph.

(g) Y can have no more than one branch point, for otherwise Y has a subgraph 5, ,
[>5.

(h) If Y has no branch points, ¥ = 4,. So suppose Y has just one branch point with three
branches of lengths /, </, </[,, [, +1,+1,+1=1[.Then /, =1, for otherwise ¥ would have

Eé as a subgraph.
WIf,,=1,=1,Y=D,.Also, [, <2, for otherwise Y has 1777 as a subgraph.

(j) Soassume [ =1, [, =2 . Then [, <4, for otherwise Y has E, as a subgraph.

L, =2=Y=E,
,=3=Y=E,
L,=4=Y=E,

Corollary 10.9. Every Dynkin diagram of a semisimple Lie algebra has connected
components of type A,,B,,D,,E,,E,,E,,F, and G, .

The Cartan matrix 4= (aij) determines the Dynkin diagram since n; =a;a,. However,

yrgit
the Dynkin diagram does not always determine the Cartan matrix. Recall that the a;

satisfy
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a, =2
a, €10,1,2,3} for i # j

If n; =1 then a,=a;=1. If n; =2 then (aij,aﬁ):(—Z,—l) or (—1,—2). If n; =3 then

(aij,a ﬁ): (— 3,— 1) or (— 1,— 3). In this last case the Dynkin diagram is G, . We have

2 -1 2 -3
A= or
-3 2 -1 2
and one is obtained from the other by re-labeling the vertices.

Suppose n; =2.If [ =2 the possibilities for the Cartan matrix are

2 -1 2 =2
A= or i
-2 2 -1 2
again obtainable from one another by re-labeling. If />3 there are two possible Cartan
matrices:

2 -1 2 -1
1 2 - 1 2
B = S ¢ - .
2 -1 2 -2
2 2 1 2
2 -1 0 2 -1 0
B,=|-1 2 -1 C,=l-1 2 -2
0 -2 2 0 -1 2
h,|=|n.|=2|n,. h| =|r.|= %]k,

We place an arrow on the Dynkin diagram when we have a double or triple edge; the
arrow points from the longer root to the shorter one. For example, with G, :

long short

Theorem 10.10. The possible Cartan matrices with connected Dynkin diagrams are (up
to permutation of the numbering of the vertices):
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2
-1
B =
-1
2
2
-1
D, =
-2
2
2 -1
-1 2
1 -1
E, =
2
-1
2 -1
-1 2 -1
-1 2 -1
-1 2 -1 0
-1 2 -1
0o -1 2
-1
GZ
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11. THE INDECOMPOSABLE ROOT SYSTEMS
A root system is called indecomposable if it has a connected Dynkin diagram.

Case | =1. We have only one possibility, 4, :

|
|

h | h,
|

Case | =2 . Here we have three possibilities

A2 BZ G2
o o ) =& )
Type A,.
ha’z ‘ hal +a,
\
‘ ~
| ~
~
|/ -
h—al P hal
-~ /|
~
- \
- |
\
—a—a, ‘ hfaz
D= {J_r o,ta,,* (0(1 +a2)}
Type B, .
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a)+a,
haz ‘ a h2a1+a2
7
| 7
| %
‘ 7
7
h—al /| hal
7
7
4 |
7 |
h e |
—201-a, hfaz
o

D= {ial,iaz,i(al +0¢2),J_r(2oc1 +a2)}

(In the above diagram, the dashed lines indicating the reflection axes are shown slightly
offset for clarity.)

Type G, .

A o +a, ‘ 20,+a, 3a,+a,

—3ay-a, 20— —a—a, —a,

D= {i a,ta,,t (al +a2),i (20(1 +a2),i (3051 +0(2),i(3051 + 2a2)}
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(Again, the dashed lines indicating the reflection axes are shown slightly offset.)

Case 1>23. Type A . It is convenient to describe the root system of type 4, in a
Euclidean space of dimension /+1.

Let 7 be an (/+1)-dimensional Euclidean space. Let {s,....,&, } be an orthogonal basis

of vectors of the same length, so <gi,g_/> =Ko, for some K >0.

1 2 11 l
[ ® e | o
Define h, =¢,— ¢, h, =& —¢&,,..., h, =&_,—¢&.The h, are linearly independent.

(hy.h, )=2K

(B h, ) =0if j2i-Lii+]
<h0‘i ’ham > =-K
h, h, —

_2< woha,) _—2K .

a; i = <h ha,.> K

Thus for suitable K the 4, form a fundamental system of roots of type 4,. Let ¥ be
the subspace spanned by these vectors; dim(Vo) =1[. Consider the map V' — V' given by

& &, e foriz2.

h, — —h,
ha2 — hal + ha2
h, & h, fori=2

This is s, . Similarly, the linear map V' — ¥ such that ¢, | <> ¢&,, all others fixed, is s,, .

W is generated by s, ,...,s, . The group generated by all transpositions (g,._lgi) is
isomorphic to S,,,. So we have a homomorphism §,,, = V. This map is surjective; it is
also injective, since any permutation of {&,,...,&, } that fixes each h, 1is the identity.
Hence, W =§,,,.

Each A, has the form 4, = w(h, ) for some we W and some i. Hence

d):{gi—gj |0Si¢jsl}.
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So @] =1(7+1).
Type B,.

1 2 /-1 [

o o L e

Let ¥ be a Euclidean space of dimension ! with basis {s,...,5 } such that
<gi,g_/> = K9, . Define

hal =& &
ha2 =& &
ha,,l =& ¢
h(zI = gl

These form a fundamental system of vectors of type B,.

h

a,

ham = \/E h

h, h, )=0for1<i</[-2
(o h,)
(hy, b, )=—K
R
(hoy ) 2K

A

a;

-1

s, 1 & <> &, and leaves others fixed,

s, & <> & and leaves others fixed,

s, &, <> & and leaves others fixed,

s, & > —¢& and leaves others fixed.

W=<s ,sa1>; for weW, w(gl.)=igj. |W|=2]l!. Each £, has the form A, =w(h, )

for some we W and some i. Hence,

a2

D={tete |[1<izj<lfuite [1<i<]}
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@] = 22@+2z =21(1-1)+21 =27

Type C,.

1 2 /-1 /

o o o o e e

Let V' be a Euclidean space of dimension [/ with basis {gl,...,gl} such that

<8i,€j>:K5ij . Define

hal =&~ &
ha,,, =&.47¢
h, =2¢

W is the same as for B,. For weW, w(gi):igj. |W| =2'l'. The h, are the vectors

tg e, (fori# j)and £2¢ . Hence,

@) =22@+2z=2z(1—1)+ 21 =2/
Type D,.
I-1
12 -2
o o o
!

Let V' be a Euclidean space of dimension [/ with basis {gl,...,gl} such that

<8i,€j>=K5ij . Define

hal = 81 - 82
ha,,l =876
h =&, tE

o

This is a fundamental system of roots of type D, .
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o

S, - € > & and leaves others fixed,

s, :&_, <> & and leaves others fixed,

I8

s, 1t&_ > F¢ and leaves others fixed.

For wel , w(s,)= t¢, . There will be an even number of sign changes, so |W| =271,

The &, have the form + ¢, t¢; for i# j.So

2

®|= 22@ ()

Type F,.

Let ¥ be a 4-dimensional Euclidean space with basis {&,,&,,5,,5, |, <5,.,8 j> =Ko, .

h, =& —¢,

a;

=&~ &

5]
h, =g,

a3

—1
h,, =3

(~&-6-5+e)

This is a fundamental system of vectors of type F,. s, ,s, ,s, permute &,¢&,,& and

a N ay ' ay

change signs arbitrarily.

1 —
4 H7(81_82_83+g4)_81+ha4
£, I—)%(—81+82—83+84)=82+ha4
. 1 _
v S 63 |—>3(—51—52+83+84)—83+ha4

g, e +e vete,)

s+e & +e,
Let S={h, |acd}.

{tete, [1<izj<3jcS
{te |1<i<3}cS
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So § contains

tete forl<i#j<4
tg for1<i<4
1
5(i31i52i83i54)

This collection of vectors is closed under the actions of S eesS

| = 22@ +2.4+2" =48

(We have 24 short roots and 24 long ones.)
Type E.

1 2 3 4 5 6 7

8

Let ¥ be a Euclidean space of dimension 8 with basis {s,...,5 } such that

<€i,gj>=K5y. . Define

h, =¢&-¢
h, =& -6 type D,
h, =& +¢
h,, :—%(51 tE,te+E,TE+HETE, +58)
ha7 = ha8
(o, by, ) =—K
<ha7 ’ha8> —2K
2 = =-1
<ha7,ha7> 2K
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These vectors form a fundamental system of type E. s, ,...,s, permute &,...,&; and

change an even number of signs.

. 1 — 1
Suy & HZ(—gl+...+3gi+...—(98)—5i+5ha8

a

8
— 1 : : 1 1
Let S—{ha |aed>}. S contains ¢, t¢; for 1<i# j<7.§ contains EZ,-=1‘91‘ so S
contains %(—6‘1—...—6‘64—87+88)=Sa8(6‘7+€8). So & +&€S. S0 S contains +¢, *g

for 1<i<7. S also contains L(+¢ +...+&,) with an even number of negative signs. So

S contains
tgte, forl<i#j<8
%(i & *...+ &) with an even number of negative signs
This is the whole of S, for it is invariant under s, ,...,s, : this is clear for s, ,...,s, but

requires a little work to check for s, . So the roots of E; are

tegte, for1<i#j<8

%Zili &, where TI()=1
| = 22(8) +27 =240
2

Type E,.

1 2 3 456

R

7

Take V as before — dim(/)=8. Take ¥, to be the subspace of ¥ perpendicular to
& —&. dim(VO)= 7 and A, ,...,h, form a basis of V;. This is a fundamental system of
type E,. Consider S ={h, | @ e ®(E,)}. This set lies in {#, | @ € ®(E,)}NV,. This
intersection is

tgte, for 2<i# j<7
i(é‘l-f-é‘g)
g +e*... T e +&) where TI(+)=1
g te t...x e —g) where TI(+)=1
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All of these can be obtained from 4, ,...,4, by means of s, ,...,s, . This is obvious
except for * (g +&,).

. 1
Sy L€ T E ole-6-...—8+g)

So *(g+&)eS.So S is

tgte, for2<i# j<7
i(é‘l-l—é‘g)
L +e*... T e +&) where TI(+)=1
L—gte t...x e —g) where TI(+)=1

(E, ) = 22@ +242°42°

Type E;.
1 2 3 45
6

We proceed as before. 4, ,...,h, form a fundamental system of vectors of type E. Let

V, be the subspace of V' for E, that is orthogonal to & — &, and &, —&,. dim(V,)=6 and

h, ,....h, form abasis of this space.

th, | @ e ®(E)jc {h, | ac®(E)inV,

The 4, in V, are

tgte for3<iz j<7
L +ete t... e +g) where TT(+)=1

L(~g-&tet...te —g) where TI(+)=1

All of these are obtainable from #, ,...,h, by s

o> Say -

D(E,) = 22@ +24 424 =72
Theorem 11.1. The number of roots in each of the indecomposable root systems is
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4 B, C D, E, E, E, F, G,
0+2) 1(21+1) (20+1) 1(21-1) 78 133 248 52 14
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12. THE SEMISIMPLE LIE ALGEBRAS

Theorem 12.1. (a) If a semisimple Lie algebra L has connected Dynkin diagram A then
L is simple.

(b) If L is a semisimple Lie algebra whose Dynkin diagram A has connected
components A,,...,A, then L=L ®---®L where L is a simple Lie algebra with

Dynkin diagram A, .

Proof. (a) Let L=H @(@aeq, L,) be a Cartan decomposition with connected Dynkin
diagram A. Let 0=/ < L. We first show that /nH #0. Suppose not, i.e. that
INH=0.Let 0£xel with x=h+ z , M€, and the number of non-zero u, as small

as possible. Let x, #0.

b= wley|= walh, .

By 8.7 we can choose e_, with [e_se;]=1,.

[[Xhﬂ ]e—ﬂ ] ==y (hﬂ )hﬁ + :“a“(hﬂ )N a,~pCa-p

aed
a-Led

[[xh,]e_s]€ I is non-zero since

~HP (hﬂ )hﬁ = _ﬂﬂ<hﬁ’hﬁ>hﬁ #0
W

The number of non-zero u, with a — € ® is less than before, a contradiction. Hence,
INH=#O.

We next show that 7/ > H . Suppose not. Then 0c InH c H. I N H is not orthogonal
to all 4, , a; €ll. For suppose I/ N H is not orthogonal to /, . Let xe I H be such

a;

that <x, h, > #0. Then

e, x]=a(wke, =(h, .x)e, <1

Soe, €l.So[e,e, ]=h, €l.So foreach ¢, ell either <ImH,ha[>=O or h, €.

Both classes are non-empty. Choose ha, ¢ I ; then <I NH ,haj> =0. This means A is

disconnected, a contradiction. Hence, H < I .

Now let ¢ € .
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le., 1= a(h, e, = (h.-h)e.

So e, €. Hence [ contains /{ andall e,. So / =L; L is simple.

(b) Suppose A is the disjoint union of connected components A,,...,A . Then II is the
union of orthogonal components II1,,...,I1 . Let H, be the subspace spanned by
{ha |aeH[}. Then H=H, ®...®H, and the H, are mutually orthogonal. Now
consider s, for some « €Il.. Then « transforms H, into itself and fixes each vector in
H, for j#i, sa(Hj):Hj. Since the s, for a €Il generate W, W(Hj):Hj for each
weW.

Foreach a e ®, h, = w(ha ) for some weW and some i. So h, € H, for some i. Let

D, = {a ed|h,eH, } Then @ =d, U...0U®, . Let L be the subspace of L spanned
by H, and the L, with a e ®,. We see that L=L ®...® L as a direct sum of vector

1

spaces.

To see that L, is a subalgebra of L it is sufficient to show that a, 8 e ®, = [ee ] € L;.
If a+p¢® then [ee;]=0.1If f=-a then [ee  |=-h,eH, If a+pe® then
a+pe® and h, ,=h,+h;eH, . So L isasubalgebra.

We next check that i # j =>[L,L;]=0.Let a € ®,, fe®,.

[h,hs]1=0
[h,e;]=0 since <ha,hﬁ> =0
[e,h,1=0 since (h,.h,) =0
le,e;]=0 since a+ B ¢ ®

h, +h, doesnotlieinany H,, h, e H,, hy;e H,.So [L,L;]=0 for i j:

[x,+...+x,p+. .+ ]=[xy]+.. +[xp]

So L=L ®...®L as a direct sum of Lie algebras. We now see that each L, is
semisimple. Let / < L, be soluble. [IL;]=0 if i# j,so I <L. I isasoluble ideal of L,

but L is semisimple, so / =0, so L, is semisimple.
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We now show that H, is a Cartan subalgebra of L,. H is a Cartan subalgebra of L, so

there is a regular element x € L such that H is the 0-(generalized) eigenspace of adx .
Since xe H and H=H,®...® H, we can write x=x, +...+x, with x, € H,.

Lo
adx[:Lj—>{ i 1=
0

So the 0-eigenspace of adx on L is the direct sum of the 0-eigenspaces of the adx; on
the L,. x is regular in L if and only if each x, is regular in Z,. So each x; is regular in

L. and the 0-eigenspace of adx; in L, is H,. So H, is a Cartan subalgebra of L, .

L=H & (@aed>[ La)

is a Cartan decomposition of L,. So @, is the root system of L, ; II, is a fundamental

root system of L, ; the Dynkin diagram of L, is A,. But A, is connected, so L, is simple
by (a).

|
We next consider simple Lie algebras with a given indecomposable Cartan matrix A .
Existence Problem: 1s there a simple Lie algebra with given Cartan matrix 4 ?
Isomorphism Problem: Are any two such Lie algebras isomorphic?

Let L be a simple Lie algebra and H a Cartan subalgebra of L :

L:H@(®ae® La)
O=0D"  UD"”

For each ae®" choose O#e,eL,; L,=Ce,. Choose e, eL , such that

le.e ]=h, . If [1={a,...,a,} then the h, and e, formabasisof L. [L,L,]cL,,, so
le,es]1=N, ge,., ifa+fe®, ax-f.

[h, h, 1=0

le 1= (1o, Je,
le_.e,]=h,

Ny pu; at+pPe®
[eaeﬂ] - .
0 otherwise

The N, , are called the structure constants.
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Proposition 12.2. The structure constants N, , satisfy
(i) N, y=-Ng,.

(i) if a, B,y € ® have a+ f+y =0 then N, ,
(i) if a,B,y,0 € ® have o+ f+y + 6 =0 and no pair have sum zero then

=N;, =N

y.a’

N,4yN,s+Ny N,s+N, ,N,;=0

(if Ene®, n#—&, n+Eed take N, =0);
(iv)if a,p € ® have a+ € D then

N N (PZI)QVI ha>

a,p VN -a,-p T a’

where the a -chain of roots through [ is

—-pa+pf,.. . B,...qa+p.

In particular, Na,ﬂ #0, so [LaLﬁ] = Lmﬂ.
Proof. (i) [e,e;]=—ese,] sO N, ,=—N, .
(i1) Suppose a+ f+y =0.

[le.esle, 1+ [lege, Je, 1+ (le,e,]es]= 0

= Na,ﬁ[ea+ﬁe;/] + Nﬂ,y[eﬁﬂ/ea] + Ny,a[ey-wzeﬂ] = 0
= Ny gh,+Ny h,+N, hy;=0
= (—Na,ﬂ+Nﬂ,y)ha+(—Na,ﬂ+N7,a)hﬂ:O

Since £, and &, are linearly independent, N, , =N, =N, .
(i11) Take a, B,7,0 € ® with zero sum and no opposite pairs.

[le.esle, 1+[lege, Je,1+[le,e,]e,]= 0

= Najﬁ[ewﬂey]JrNﬁjy[eﬂﬂ,ea]%rN%a[eﬂaeﬁ]:O
= (Na,ﬂNa+ﬁ,7 +Nﬂ,7Nﬁ+7,a +N7,aN7+a,ﬁ a+p+y =0
=

N,4yN,s+Ny N,s+N, ,N,;=0

VT a,

(iv) Let o, f e ® with a+ € D.
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[le.e . les]1+[le .ezle,]1+([leze,le ,1=0
- [haeﬁ] + Nfa,ﬁ[ef

(ﬂ(ha)—i_ N—a:ﬁN—a+ﬁ,a T Nﬂ,aNoH-ﬁ,—a )eﬁ =0
Na,ﬁNfaJr,B,a + N/},aNaJrﬁ,,a = —<l’la,hﬂ>

Na,ﬁN—a,—ﬁ - Na,—a+ﬂN—a,a—ﬁ = <ha’ hﬂ>

a+ﬁea] + N ,a[ea+ﬁefa] = 0

b Ul

Take M, ;, =N, ;N , 4,80

Ma,ﬁ _Ma,—a+ﬂ = <ha’hﬁ>
Let the « -chain of roots through £ be

-pa+p,... . B,...qa+f

So
Mll,ﬁ' _Ma,—a+/} = <haahﬂ>
Ma,—a+ﬂ _Ma,—2a+ﬁ = <ha,h_a+ﬁ,>
Ma,—2a+ﬁ' _Ma,—3a+ﬁ = <haah_2a+ﬁ>
Ma’—POH'ﬁ = <ha’h—pa+ﬁ>
So

M, = (p+1hyhy) = (b h )1 +2+...+ p)
:(p+1)<ha’hﬁ>_w<ha’ha>

By, by 8.11, 2(h,.h,) [(h,.h,) = p—q .50

>((p+1)2(p—q) _ p(p+1))

2

M, ,=(h,.h

a,p a

— _[(p+1)g <

2

a

h ,ha>

So N, ,;,#0;[L,L;]=L,, 4.
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This result has certain consequences. Let o, e®, a+fe®, [e.e;]=N, ¢, ,. Let

y=—a— . Then a+ f+y=0. We have the following ordered pairs of roots whose
sum is a root:

(@.8) (B.7) (v.a) (B.a) (7.5) (@.7)
~a-8)  B-r)  (r-a) (B-a) (r-8) (-a-7)

We have a total order o < . An ordered pair (a, ﬁ) such that 0<a < S is called a
special pair.

Either one or two of «,f,y are positive; if one is positive two of —a,— f,—y are
positive. Of the twelve pairs above just one is special.

N, s
pair by using 12.2(i), (ii), (iv). So consider N, , when (a,ﬂ) is special; a+ e @ \II.

a

for any ordered pair (a, ,6’), can be expressed in terms of N, , for (§,n) a special

This root may be expressible as a + ff=a'+ 8/ where (o', ') is special and distinct
from (a, B).

A special pair (a, ,b’) is called extra special if for any special pair (a', ﬂ') with
a+pf=a+f wehave a<a'.

The number of extra special pairs is ‘qy* \H‘ .

Now let (¢, ) be special but not extra special. Then &+ f=a'+ ' where (a,f) is

extra special — such an extra special pair exists because the set of special and extra special
pairs is finite.

o'+ [ +(-a)+(-)=0

Ny yNoy g+ Ny Ny y+ Ny Ny ;=0
O<a<a'=<p=<p

tNpwaNoo(pa)t Npp pN-

p-a' o' —a,—

N

a’,ﬁ’N

—a,-f =0

(a'-a),~a

We show that N, , is determined by N, ’s for extra special pairs (&,7). We use

inductionon '+ f':

N, p 1is determined by N, ;, Ny oy Nyg yo Ny goy Ny (a,B) is extra
special.

Either (8 -a',a’) or (&', 8 —a') is special:
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(f-a)+a' =p<a+p=a+p

So N,._,, can be expressed in terms of N, for extra special pairs (&,7).
Either (o, ' —a) or (' —a,a) is special:

a+(f-a)=p<a+p
Either (8-, p') or (5, 8- B') is special:

(B-B)+ B =p=a+p
Either (&' —a,a) or (a,a’ —a) is special:

(@ -a)ra=a <a' +f

Hence, N, , can be expressed in terms of N, ’s for extra special pairs (5,77). So

relations 12.2(i)-(iv) expresses all N, ,’s in terms of N, ’s for extra special pairs

(&m).

Theorem 12.3. There is a unique simple Lie algebra, up to isomorphism, with a given
indecomposable Cartan matrix.

L=H @ (@aedJ )
dim(L)=1+ |d)|
Thus, the simple Lie algebras and their dimensions are given by

dim(4,)=1(+2)  dim(B,)=1(21+1)  dim(C)=1(2/+1)  dim(D,)=1(21-1)
(1>1) (1>2) (1>3) (1>4)
dim(E,)=78  dim(E,)=133 dim(E,)=248 dim(F,)=52  dim(G,)=14

Note. The following are isomorphic:

B,=C, )
4, =D, .\./
D, =4 & 4 e o

Proof. Uniqueness. Let L,L" be simple Lie algebras with indecomposable Cartan matrix
A= (ai].). L has a Cartan decomposition L =H (—D((—D ) If I1= {al,...,a,} then H

acd
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has basis {hal,...,hal }; L has basis {h

a;

sooshy, fU{e, | @ e®}. Multiplication of basis

elements:

[k, h, 1=0

le 1= (R, Je,
e e, 1=h,

a

lee]= N, p€,.;, a+tped
“’ 0 Oxa+Led

All scalar products <ha,hﬁ> are determined by 4. Also, all of the 4, (as linear

combinations of the /, ) are determined by 4.
S (ha/ )= ha/ —a;h,

So the s, are determined by 4. The Weyl group W is generated by s, ,...,s, . So W is

determined by A. h, =w(h, ) for some i and some we W . So the 4, are determined by
A.

So 2<ha,hﬂ>/<ha,ha> is determined by 4. But

! =zﬂe@[<h“’hﬂ>]2

(fsh) (fsh)
by 8.13. So <ha,ha> is determined by 4. So <ha,hﬁ> is determined by 4.

Suppose a basis {h’ Sh, }u {e/ |ae®} of L' is given. We describe how to choose

@ 2"

a basis of L. The h, are uniquely determined. Choose e, #0 in L, for each o €lIl.

For each @ e ®" \I1 there is a unique extra special pair (ﬂ,]/) such that ¢ =g+,
pB.y<«a.

Assume by induction that e,,e, are already chosen. Choose ¢, by e, =N, [eze,] where
Ny, :N'M, the structure constant for L'. Having thus chosen e, for a € ®", we

choose e , by [e e, ]1=1h,.
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The N, , for arbitrary «, f are determined by the N, ,, where (5,77) is extra special, by

é.n?

12.2. Since N,, =N_, for all extra special (&,7) it follows that N, ,;=N, , for all
a,fed witha+ ed.

This shows that L and L' are isomorphic.

Existence. (Sketch proof.) Begin with Cartan matrix A=(aij). Let H be an /-
dimensional vector space over C with basis #,,...,h, . We define s, :H > H by

S, (b, ) =h, —azh, , a self-inverse map. Let W be the group of all non-singular linear

a2

maps H — H generated by s, ,...,s, . W is finite. Correspondingly,
{ha :w(hal_)| weW,lSiSZ}
is also finite. (The /4, were determined in Chapter 11.) We now define a bilinear map

HxH —>C
(x.y) (x.y)

This form is uniquely determined by 4. Define a € H" by a(x): <ha,x>; let @ be the

set of all such « .

Let L be a vector space over C with dim(L)=dim(H )+ |d>| with basis
{hal - }u e, |acd}

Define a bilinear map

LxL—L
(6.9) > [w]
We define | | on the basis elements by
[h,,h, 1=0
(e, 1= h, e,1=(h,.h, Je,
[efaea] = ha

lee]= N, s€,.s, atped
“’ 0 Oza+B¢d
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The N, , can be chosen arbitrarily if (a,p) is extra special, e.g. N,z=1. N, , is

determined for all other pairs by 12.2. So multiplication of basis elements is determined
by 4. We make various checks:

Check [xx]=0 for all xe L. (Easy.) Check [[xylz]+ [[yz]x]+[[zx]y]+0. (Most are easy,
but x=e,, y=e,, z=e¢, is difficult.) Then L is a Lie algebra, L=H ®(®,_, L,).
L,=Ce,. Check that H is a Cartan subalgebra of L. (Difficult.) Then
L=H®(®,_, L,) is a Cartan decomposition of L with respect to H . (Easy.) Then ®
is the set of roots of L with respect to H. I1= {al,...,al } is a fundamental system of

roots inside @ . We have

()
22— =aq,
(st}
so A is the Cartan matrix. Finally, the argument of 12.1(a) proves that L is simple.
|
Review.
L SemiSimple choose >® choose >A= (a?/)
Cartan fundamental
subalgebra roots
I1

If we choose a different Cartan subalgebra and a different fundamental system do we get
a different 4?

Theorem 12.4. (i) Let L be a Lie algebra and H,,H, Cartan subalgebras. Then there
exists an automorphism 0 : L — L such that 6(H,)= H,.

(i) A subalgebra H of L is a Cartan subalgebra if and only if H is nilpotent and
H=N(H).

Theorem 12.5. Let ® be the root system of a semisimple Lie algebra and let 11,1, be
two fundamental systems in ® . Then there is a we W such that w(I1,)=T1,.

12.4 and 12.5 imply that the Cartan matrix is uniquely determined by L. So the simple
Lie algebras on our list are pairwise non-isomorphic.

We have four infinite families of simple Lie algebras and five exceptional ones:
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Classical Exceptional
4 B, C D, E, E, E, F, G,
0+2) 1(21+1) (20+1) 1(21-1) 78 133 248 52 14

[>1 [>22 123 [>4

Type 4. We can write dim(4,)=/(/+2)=(+1] -1. The set sl ,(C) of all
(/+1)x(I+1) matrices of trace zero forms a Lie algebra of type 4,. The diagonal
subalgebra is a Cartan subalgebra.

Type B,. The set so,, (C) ofall (2/+1)x (2 +1) matrices X satisfying

oS O

X' I |X

o o -
~
o~ o
|
|

forms a simple Lie algebra of type B,. The diagonal subalgebra is a Cartan subalgebra.
s50,,,(C) is isomorphic to the Lie algebra of all (2/+1)x(2/+1) skew-symmetric

matrices. Elements of 502”1(@) have the block form
O XOI XOZ
X=|- XoTz X, Xy
- XoTl Xy - X1T1

where X, is an arbitrary /x/ matrix, X,, and X,, are /x/ symmetric matrices and X,

and X, are arbitrary 1x/ matrices (row vectors).

Type C,. The set 5p2,((C) of all 2/x 2/ matrices X satisfying

X 0 1) (0 1 %
-1, 0) (-1, 0
forms a simple Lie algebra of type C,. The diagonal subalgebra is a Cartan subalgebra.
Elements of sp,,(C) have the block form

X:(Xn XIZTJ
le _Xn

where X, is an arbitrary /x/ matrix and X, and X,, are /x/ symmetric matrices.
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Type D,. The set s0,,(C) of all 2/x 2/ matrices X such that

% 0 7,y (0 1 %
I, o) I o
forms a simple Lie algebra of type D,. The diagonal subalgebra is a Cartan subalgebra.

sozl(C) is isomorphic to the Lie algebra of all 2/x2/ skew-symmetric matrices.
Elements of so,,(C) have the block form

X:(Xn Xlsz
le _Xll

where X,, is an arbitrary /x/ matrix and X,, and X,, are /x/ skew-symmetric
matrices.

5[, (C) is the Lie algebra of SL,(C)={X eGL,(C) | det(X)=1}; so,(C) is the Lie
algebra of SO, (C)= {X eGL,(C)| X"X =1, and det(X)=1 }

Type G,. dim(Gz): 14. Consider the algebra of octonians (a.k.a. Cayley numbers), O .
dim(0)=8. O has basis lL¢,e,,...,e;:

1 is the multiplicative identity;
el =—1for 1<i<7;

ee, =te, for 1<i#j<7.

1

4

The projective plane over the 2-field.

ee,=e ifi— j;ee =—¢ if i j.
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O is a non-associative algebra. The set of all derivations of (O, i.e. linear maps
D : 0O — O such that D(xy) = D(x)y + xD(y), forms a Lie algebra of type G, .

Type F,. Define the octonian conjugate:

x=Xx < x=aq,l

A matrix M over O is called Hermitian if M" =M . Let J be the C-vector space of
all 3x3 Hermitian matrices over O . Such matrices have the form

al x y
M=|x bl z
y z cl

where a,b,c e C and x,y,z€ 0. dim(j ) =27 . We define multiplication on J by

M, xM, :%(M1M2+M2M1)
M xM,eJ for M|,M,eJ

J 1s a commutative non-associative algebra; it is an example of a Jordan algebra, the
axioms for which are that

XxY=YxX
(szY)xX:sz(YxX)

The derivations of J form a simple Lie algebra of type F,.
E,, E, and E; can all be described in terms of O and J .

There is an alternative approach to the existence theorem, which proceeds (in outline) as
follows:

Let L be a simple Lie algebra with Cartan matrix 4 = (al.j), L=H®(@®,_,L,). H has
basis 4, ,...,h, . Let
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hy,...,h also form a basis of H . Choose 0#¢ €L, and 0+ fie L, .

[e;h]= aj(hi)ej
=(h, 1),
2<h"‘f i h"‘f >

(o)

=4,¢,;

Lfih]=~a;f,

Choose f, with [fie]=1%; e,....,e, generate © o L,s fisenf; generate @ L, ;

1

h.....h, generate H.So G={e, f,h, | 1<i<I} generates L. We have relations R :

[hh,]=0
le;fi]1=aye,
Lfi]=—a;f;

[fel="h
[fie]=0if i=j
le;...efee ]]=0if i= j (1-a; ¢°s)
o fLASN=0 0807 j (1=ay £7)

(The requirements for 1—a; ¢’s and f;’s arise from consideration of the «;,-chain of
roots through «,.) The Lie algebra generated by G with relations R is a finite-

dimensional Lie algebra with Cartan matrix 4.

L 1is constructed as follows: let R be the polynomial ring C<el,...,e,,f1,...,f,,hl,...,h,>
with non-commutative variables. [R] is the Lie algebra obtained from R . Let M be the
subalgebra generated by e,,....e, f,,..., f;,h,....h,. Let I be the ideal of M generated by

[hihj]9 [ejhi]_aijej: [f;‘hi]+a1]‘f;‘7 [f;‘ei]_éy'hiﬁ [ei"'ei[eiej]]a [fzfl[fzfj]]

Then L= M/I.We can show that L is finite-dimensional and has Cartan matrix A .
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