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1. DEFINITIONS AND BASIC PRINCIPLES 
 
An algebra over C  is a vector space A  over C  with a bilinear multiplication 

AAA →× , ( ) xyyx a, . Bilinearity means that for all Ayx ∈,  and C∈λ  
 

( ) yxyxyxx 2121 +=+  

( ) 2121 xyxyyyx +=+  

( ) ( ) ( )xyyxyx λλλ ==  
 
All the algebras in this course will be over C . The main advantage of C  is that it is 
algebraically closed. 
 
An associative algebra is an algebra A  such that for all Azyx ∈,, , ( ) ( )zxyyzx = . 
 
A Lie algebra

† is an algebra L  with multiplication LLL →× , ( ) [ ]xyyx a,  such that 
 

[ ] 0=xx  for all Lx∈ , 

[ ][ ] [ ][ ] [ ][ ] 0=++ yzxxyzzxy  for all Lzyx ∈,,  – the Jacobi identity. 
 
Unless otherwise specified, L  shall be an arbitrary Lie algebra. Where dictated by 
requirements of clarity, we shall write [ ]yx,  for [ ]xy . 
 
Lemma 1.1. For all Lyx ∈, , [ ] [ ]yxxy −= . 
 
Proof. 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]yxxyyyyxxyxxyxyx +=+++=++= ,0  
 

 
 
We say that Lie multiplication is anticommutative. 
 
Lemma 1.2. Suppose A  is an associative algebra. Then A  can be made into a Lie 

algebra by defining [ ] yxxyxy −= . 
 
Proof. [ ] 0=xx  is clear. 
 

[ ][ ] [ ] zyxzxyyxzxyzzyxxyzxy +−−=−= ,  

[ ][ ] xzyxyzzyxyzxxyz +−−=  

[ ][ ] yxzyxzxzyzxyyzx +−−=  
 

                                                 
† After Marius Sophus Lie (1842-99). 
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All terms cancel, so we have the Jacobi identity. 
 

 
The Lie algebra obtained in this way is denoted [ ]A . 
 
We can also multiply subspaces in the following way: let L  be a Lie algebra and KH ,  

subspaces of L . We define [ ]HK  to be the smallest subspace containing all the Lie 

products [ ]hk  for KkHh ∈∈ , . So 
 

[ ] [ ] [ ]{ }KkHhkhkhHK iirr ∈∈++= ,11 K . 

 
Lemma 1.3. If KH ,  are subspaces of L  then [ ] [ ]KHHK = . 
 
Proof.  
 

[ ] [ ] [ ] [ ] [ ] [ ]KHhkhkkhkhHK rrrr ∈−−−=++∋ KK 1111  
 

 
 
Multiplication of subspaces is commutative. 
 

LH ⊆  is called a subalgebra of L  if H  is a subspace of L  and [ ] HHH ⊆ . That is, a 
subalgebra of L  is a subset of L  that is itself a Lie algebra under the same operations as 
L . 
 
A subset LI ⊆  is called an ideal of L  if I  is a subspace of L  and [ ] IIL ⊆ . We will 
write LI < . 
 
Note. Since [ ] [ ]LIIL = , [ ] [ ] ILIIIL ⊆⇔⊆ . 
 
Every ideal of L  is also a subalgebra of L , but the converse is not true. 
 
Example. Consider { }Cover  matrices 222 ×=M . [ ]2M  is a Lie algebra. The subset T  of 

elements of [ ]2M  of trace zero form an ideal of [ ]2M . The subset U  of elements of [ ]2M  

with upper-right element zero form a subalgebra of [ ]2M , but not an ideal. 
 
Proposition 1.4. (i) If KH ,  are subalgebras then KH ∩  is a subalgebra. 

(ii) If LKH <,  then LKH <∩ . 

(iii) If LH <  and K  is a subalgebra then KH +  is a subalgebra. 

(iv) If LKH <,  then LKH <+ . 

 
Proof. (i) KH ∩  is certainly a subspace. 
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[ ] [ ] HHHKHKH ⊆⊆∩∩ ,  

[ ] [ ] KKKKHKH ⊆⊆∩∩ ,  
 
(ii)  
 

[ ] [ ] HHLLKH ⊆⊆∩ ,  

[ ] [ ] KKLLKH ⊆⊆∩ ,  
 
(iii) 
 

[ ] [ ] [ ] [ ] [ ] KHKHHHKKKHHKHHKHKH +⊆+++⊆+++⊆++ ,  
 
(iv) 
 

[ ] [ ] [ ] KHKLHLLKH +⊆+⊆+ ,  
 

 
Note. The sum of two subalgebras need not be a subalgebra. 
 
We can form factor algebras: let LI < . In particular, I  is an additive subgroup so we 
can form the factor group IL ; the elements of IL  are the cosets xI +  for Lx∈ . 
 

( ) ( ) ( )yxIyIxI ++=+++  

( ) xIxI λλ +=+  
 
We define [ ] [ ]xyIyIxI +=++ , . We do need to check that this is well-defined, i.e. that 

if xIxI ′+=+  and yIyI ′+=+  then [ ] [ ]yxIxyI ′′+=+ . We can find Iii ∈21,  such 

that xix +=′ 1  and yiy +=′ 2 . So 
 

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ]xyI

xyxiyiii

yixiyx

+∈
+++=

++=′′

2121

21 ,

 

 
So the coset containing [ ]xy  is the same as that containing [ ]yx ′′ . 
 
It is easy to verify that IL  is a Lie algebra. 
 
A homomorphism of Lie algebras is a linear map 21: LL →θ  such that for all 1, Lyx ∈ , 

[ ]( ) ( ) ( )[ ]yxxy θθθ ,= . If θ  is bijective it is called an isomorphism and we write 21 LL ≅ . 
 
Proposition 1.5. Let 21: LL →θ  be a homomorphism with kernel K . Then 1LK < , 

( )θim  is a subalgebra of 2L  and ( )θim1 ≅KL . 
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Proof. Let 1, Lyx ∈ . ( ) ( )[ ] [ ] ( )1, Lxyyx θθθθ ∈= , so ( )θim  is a subalgebra of 2L . 
 
Now let Kx∈  and 1Ly∈ . Then 
 

[ ] ( ) ( )[ ] ( )[ ] 0,0, === yyxxy θθθθ  
 
so Ky∈ . Hence, 1LK < . 
 
Now let 1, Lyx ∈ . 
 

( ) ( ) ( ) yKxKKyxyxyx +=+⇔∈−⇔=−⇔= 0θθθ  
 
So ( ) xKx +aθ  is a bijection between ( )θim  and KL1 . We now check that this 

bijection is an isomorphism of Lie algebras: let 1,, Lzyx ∈ . 
 

( ) ( )[ ] ( ) [ ] ( )
[ ]

[ ] zKyKxK

zKxyK

zxyzyx

+=++⇔
+=+⇔

=⇔=

,

, θθθθθ
 

 
So ( ) KL1im ≅θ . 

 
 
Proposition 1.6. Let LI <  and H  a subalgebra of L . Then HI +  and HI ∩  are 

subalgebras (by 1.4) and 

(i) HII +< , 

(ii) HHI <∩ , 

(iii) ( ) ( )HIHIHI ∩≅+ . 

 
Proof. (i) [ ] [ ] ILIHII ⊆⊆+ ,, . 
 
(ii) 
 

[ ] [ ] IIHHHI ⊆⊆∩ ,  

[ ] [ ] HHHHHI ⊆⊆∩ ,  
 
(iii) We can form ( ) IHI +  and ( )HIH ∩ . Elements of ( ) IHI +  have the form 

hIhiI +=++  for Hh∈ . Define a map ( ) IHIH +→:θ  by ( ) hIh +=θ . This map 

is a homomorphism since [ ] [ ]hhIhIhI ′+=′++ , . It is surjective: ( ) ( ) IHI +=θim . 

Consider ( )θker : ( ) IhIhIh ∈⇔=+⇔∈ θker . So ( ) IH ∩=θker . By 1.5 

( ) ( )θθ imker ≅H , so ( ) ( )HIHIHI ∩≅+ . 
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Note. In this course we shall consider only finite-dimensional Lie algebras over C . In 
this case, 
 

( ) ( ) ( )ILIL dimdimdim −=  
 
To prove this, select a basis ree ,,1 K  of I  and extend to a basis nee ,,1 K  of L . Each 

element of L  has the form nnee λλ ++K11 ; each element of IL  has the form 

( ) ( )nnrrnnrr eIeIeeI λλλλ ++++=+++ ++++ KK 1111 . nr eIeI ++ + ,,1 K  form a basis for 

IL . So ( ) ( ) ( )ILrnIL dimdimdim −=−= . 
 
Examples. If ( ) 1dim =L , L  has basis x . [ ] 0=xx , so [ ] 0=LL . 
 
If ( ) 2dim =L  let yx,  be a basis for L . [ ] [ ] 0== yyxx , but [ ] [ ] ?=−= yxxy  Possibly 

[ ] 0=LL . If [ ] 0≠LL  then [ ]( ) 1dim =LL . Let x′  be a basis for [ ]LL  and yx ′′,  a basis for 

L  itself. Then we have [ ] xyx ′=′′ λ  for some { }0\C∈λ . Re-choose yy ′=′′ −1λ : we then 

have that [ ] xxy = . Hence, we have two Lie algebras of dimension 2 . 
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2. REPRESENTATIONS AND MODULES OF LIE ALGEBRAS 
 
Recall that { }Cover  matrices nnM n ×=  and that [ ]nM  is the Lie algebra of such matrices 

with [ ] BAABAB −= . 
 
A representation of a Lie algebra L  is a homomorphism [ ]nML →:ρ  for some N∈n . 

I.e., 
 

[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )xyyxyxxy ρρρρρρρ −== , . 
 
If ρ  is a representation of L  then so is ρ′  given by ( ) ( )TxTx ρρ 1−=′  where T  is a non-
singular nn×  matrix independent of x . We say that two representations are equivalent if 
there is a non-singular T  such that ( ) ( )TxTx ρρ 1−=′  holds for all Lx∈ . 
 
An L -module is a vector space V  over C  with a map VLV →×  such that 
(i) ( ) vxxv a,  is linear in both v  and x ; 

(ii) [ ] ( ) ( )xvyyvxxyv −=  for all Vv∈  and Lyx ∈, . 
 
We shall only deal with finite-dimensional L-modules in this course. 
 
A submodule W  of V  is a subspace of V  such that Wwx∈  for all LxWw ∈∈ ,  i.e. a 
subspace closed under the right action of the element of L . 
 
Proposition 2.1. Let V  be an L -module with basis nee ,,1 K . Let Lx∈  and let 

( )∑ =
=

n

i jiji exxe
1
ρ . Let ( )xρ  be the matrix with ij th entry ( )xijρ . Then ( )xx ρa  is a 

representation of L  and a different choice of basis gives an equivalent representation. 
 
Proof. The linear transformation vxva  has matrix ( )xρ ; ( )yvxva  has matrix 

( ) ( )yx ρρ ; ( )xvyva  has matrix ( ) ( )xy ρρ ; ( ) ( )xvyyvxv −a  has matrix 

( ) ( ) ( ) ( )xyyx ρρρρ − . That is, the linear transformation [ ]xyvva  has matrices [ ]xyρ  

and ( ) ( ) ( ) ( )xyyx ρρρρ − . So [ ] ( ) ( ) ( ) ( )xyyxxy ρρρρρ −= , so ρ  is a representation of 
L . 
 
Now take a new basis nff ,,1 K  of V . The linear transformation vxva  is represented by 

a matrix ( )TxT ρ1− , where ∑ =
=

n

i jiji fTe
1

. So we get a representation ( )TxTx ρ1−a  that 

is equivalent to ρ . 
 

 
An L -module is called irreducible if it has no submodules except itself and 0 ; otherwise 
it is said to be reducible. 
 



MA453 LIE ALGEBRAS 

- 9 - 

An L -module V  is called decomposable if there are submodules 0, 21 ≠VV  of V  such 

that 21 VVV ⊕= ; otherwise it is said to be indecomposable. 
 
Proposition 2.2. L  is itself an L -module under the map ( ) [ ]xyyxLLL a,:→× . 
 
This is the adjoint L -module; we define LLy →:ad  by ( ) [ ]xyxy =ad . 
 
Proof. It is sufficient to show that for all Lzyx ∈,, , [ ][ ] [ ][ ] [ ][ ]xzyyzxxyz −= . This 
follows immediately from the Jacobi identity and the anticommutativity of Lie 
multiplication. 

 
 
A derivation of a Lie algebra L  is a linear map LLD →:  such that for all Lyx ∈, , 
 

[ ] [ ] [ ]DyxyDxxyD ,, += . 
 
Proposition 2.3. Let Lx∈ . Then xad  is a derivation of L . 
 
Proof. Linearity is clear. We need to check that ( )[ ] ( )[ ] ( )[ ]zxyzyxyzx ad,,adad += . This 
is true if and only if the Jacobi identity is true. 

 
 
Let V  be an L -module, W  a subspace of V  and H  a subspace of L . We define WH  to 
be the subspace spanned by wh  for all HhWw ∈∈ , . 
 
If W  is a submodule of V , WV  is itself an L -module under the action 

( ) vxWxvW +=+  for LxVv ∈∈ , . This action is well-defined because 
 

( ) ( ) ( ) xvWvxWWxvvWvvxvWxvW ′+=+⇒∈′−⇒∈′−⇒′+=+ . 
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3. ABELIAN, NILPOTENT AND SOLUBLE LIE ALGEBRAS 
 
A Lie algebra L  is abelian if [ ] 0=LL , i.e. [ ] 0≡xy . 
 
Define LL =1  and inductively define [ ]LLL nn =+1 . 
 
Proposition 3.1. For each N∈n , LLn < . 
 
Proof. It is sufficient to show that if LKH <,  then [ ] LHK < . Let LzKyHx ∈∈∈ ,, . Is 

[ ][ ] [ ]HKzxy ∈ ? 
 

[ ][ ] [ ][ ] [ ][ ]yzxxyzzxy −−=  
 
But [ ] Kyzy ∈,  and [ ] Hzxx ∈,  so [ ][ ] [ ]HKLHK ⊆ . 
 
Clearly LLL <=1 . If we assume inductively that LLn <  then the above workings show 
that [ ] LLLL nn <=+1 , and the result follows. 

 
 
Proposition 3.2. K⊇⊇⊇= 321 LLLL  
 
Proof. For each n , [ ] nnn LLLL ⊆=+1  since LLn < . 

 
 
L  is nilpotent if there is an N∈n  such that 0=nL . 
 
Clearly every abelian Lie algebra is nilpotent as 02 =L . 
 
Example. Let L  be the Lie algebra of upper-triangular nn×  matrices with zeroes on the 
principal diagonal; ( ) ( )1dim 2

1 −= nnL ; L  is a subalgebra of [ ]nM . Define subspaces iH  

by requiring that elements of iH  have zeroes on and below the ( )1−i th diagonal above 

the principal diagonal. 
 
Lie multiplication shows that [ ] 1, −⊆ ii HLH . We show that i

i HL ⊆  by induction on i . If 

1=i  then 1
1 HLL == . Assume i

i HL ⊆  for ri = . Then 

 
[ ]
[ ]

1

1

+

+

⊆
⊆

=

r

r

rr

H

LH

LLL

 

 
In particular, 0=⊆ n

n HL , so L  is nilpotent. 
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Proposition 3.3. For all 1, ≥nm , [ ] nmnm LLL +⊆ . 
 
Proof. Use induction on n . If 1=n  then [ ] [ ] 11 +== mmm LLLLL . Assume for rn =  and 
consider 1+= rn : 
 

[ ] [ ][ ]
[ ][ ]
[ ][ ] [ ][ ] identity Jacobi by the 

1

LLLLLL

LLL

LLLLL

rmrm

mr

rmrm

+⊆

=

=+

 

 
So 
 

[ ] [ ] [ ][ ]
[ ]

1

1

11

++

+++

++

⊆

+⊆

+⊆

rm

rmrm

rmrmrm

L

LLL

LLLLLLL

 

 
 
We now inductively define another sequence of subspaces of L : 
 

( ) LL =0  
( ) ( ) ( )[ ]iii LLL =+1  

 
The ( )iL  are all ideals of L , so ( ) ( )ii LL ⊆+1 , so ( ) ( ) ( ) K⊇⊇⊇= 210 LLLL . 
 
We say that L  is soluble if there is an N∈n  such that ( ) 0=nL . 
 

Proposition 3.4. (i) ( ) n

LL n 2⊆ . 

(ii) Every nilpotent Lie algebra is soluble. 
 
Proof. (i) Induction on n : if 0=n  ( ) 10 LLL == . Assume for rn = : 
 

( ) ( ) ( )[ ]
[ ]

12

22

1

+

⊆

⊆

=+

r

rr

L

LL

LLL rrr

 

 

(ii) Suppose L  is nilpotent. Then there is an n  such that 02 =
n

L . By (i) ( ) 0=nL  also, so 
L  is soluble. 
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Example. Let L  be the set of all nn×  matrices with zeroes below the principal diagonal. 
[ ] LLL ⊆ ; L  is a subalgebra of [ ]nM . Define subspaces iH  by requiring that elements of 

iH  have zeroes on and below the i th diagonal above the principal diagonal. 

 
We have that [ ] 1+⊆ iii HHH . We show that ( )

i

i HL ⊆  by induction on i . If 0=i  then 
( )

0
0 HLL == . Assume for ri = . Then ( ) ( ) ( )[ ] [ ] 1

1
+

+ ⊆⊆= rrr

rrr HHHLLL . In particular, 
( )

n

n HL ⊆  so L  is soluble. 

 
However, L  is not nilpotent. To see this, consider 
 



















=
−

00

0

00

1

1

n

A
µ

µ

O

O
 and 
















=

n

B

λ

λ

0

01

O  



















=
−

00

0

00

1

21

nn

AB
λµ

λµ

O

O
 



















=
−−

00

0

00

11

11

nn

BA
λµ

λµ

O

O
 

[ ]

( )

( )


















−

−

=−=
−−

00

0

00

11

121

nnn

BAABAB
λλµ

λλµ

O

O
 

 
By choosing the iλ  all unequal and the jµ  suitably we can get any desired matrix 

 

[ ]


















=
−

00

0

00

1

1

nv

v

AB
O

O
 

 
Let K  be the subspace consisting of all matrices of this form. 
 

[ ] [ ][ ] [ ] iLLLLKLKLK =⊆⊆⊆⊆ KK  
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So iLK ⊆  for all i  and 0≠K , so 0≠iL  for all i . Hence, L  is not nilpotent. 
 
Proposition 3.5. (i) Every subalgebra of a soluble Lie algebra is soluble. 

(ii) Every factor algebra of a soluble Lie algebra is soluble. 

(iii) If LI <  and ILI ,  are soluble then L  is soluble. 
 
Proof. (i) Let H  be a subalgebra of L . L  is soluble so ( ) 0=nL  for some n . We show 
that ( ) ( )ii LH ⊆  for all i . This is true for 0=i . Assume it is true for ri = . 
 

( ) ( ) ( )[ ] ( ) ( )[ ] ( )11 ++ =⊆= rrrrrr LLLHHH  
 
So ( ) 0=nH  and H  is soluble. 
 

(ii) LI < . We need to show that ( )( ) ( )( ) ILIIL ii += . This is true for 0=i ; assume it for 
ri = : 

 
( )( ) ( )( ) ( )( )

( ) ( )

( ) ( )[ ]
( ) ( )[ ]
( )

I
LI

I

LLI

I

LILI

I
LI

I
LI

rrr

r

rr

rr

rr

ILILIL

1

,

1

],[

],[

++

+

++

++

+

=

=

=

=

=

 

 

If ( ) 0=nL  then ( )( )
IIIL

n = , the zero subspace of IL . 
 

(iii) Suppose I  and IL  are soluble. ( )( )
mIIILIL

m  somefor   soluble =⇔ . 
( )

I
I

I
LI m

=+ , 

so ( ) IL m ⊆ . I  is soluble so ( ) 0=nI  for some n . 
 

( ) ( )( )( ) ( ) 0=⊆=+ nnmnm LLL  
 
So ( ) 0=+nmL ; L  is soluble. 

 
 
Proposition 3.6. Let KH ,  be soluble ideals of L . Then KH +  is a soluble ideal of L . 
 
Proof. We know that LKH <+ . By 1.6, 

KH
K

H
KH

∩
+ ≅ . K  is soluble, so ( )KHK ∩  is 

soluble. Hence, ( ) HKH +  is soluble. By the previous proposition, since H  is soluble, 
KH +  is soluble. 

 
 
Corollary 3.7. Any Lie algebra L  has a unique maximal soluble ideal. 
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Proof. Since ( ) ∞<Ldim  L  certainly has a maximal soluble ideal. Let KH ,  be two 
maximal soluble ideals of L . Then KH +  is a soluble ideal. KHH +⊆  and H  is 
maximal, so KHH += . Similarly KHK += , so KH = . 

 
 
This maximal soluble ideal of L  is called the soluble radical L , usually denoted R . If 

0=R  we say that L  is semisimple. 
 

RL  is semisimple. For if RR′  is the soluble radical of RL  then since RR′  and R  are 

both soluble, so is R′ . Hence RR ⊆′ . So RR =′  and RRRR =′  is the zero subspace of 

RL . 
 
A Lie algebra L  is called simple if it has no ideals other than 0  and L .† 
 
If ( ) 1dim =L  then L  is certainly simple. There are other simple Lie algebras. If L  is 

abelian and simple then ( ) 1dim =L , since [ ] 0=LL . If L  is soluble and simple and 

( ) 1dim =L  then [ ]LLL ≠ , so [ ] 0=LL . 
 
If LI <  then the ideals of IL  have the form IJ  for LJ < , IJ ⊇ . So IL  is simple if 
and only if I  is maximal. 
 
A composition series of L  is a sequence of subalgebras 
 

010 =⊃⊃⊃= rKKKL K  

 
where ii KK <1+  is maximal. The factor algebras ii KK 1−  are all simple Lie algebras and 

are known as the composition factors of L . 
 
Proposition 3.8. L  is soluble if and only if all composition factors in a composition 

series of L  are 1-dimensional. 
 
Proof. Let 010 =⊃⊃⊃= rKKKL K  be a composition series. L  is soluble, so iK  is 

soluble, so 1+ii KK  is soluble. So ( ) 1dim 1 =+ii KK . Conversely, suppose that 

( ) 1dim 1 =+ii KK . Then certainly 1+ii KK  is soluble (even abelian). 1−rK  is soluble and 

12 −− rr KK  is soluble, so 2−rK  is soluble. 23 −− rr KK  is soluble, so 3−rK  is soluble. 

Eventually we see that LK =0  is soluble. 
 

 

                                                 
† The classification of the simple Lie algebras was completed in the 1890’s by Élie Cartan and Wilhelm 
Killing, working independently. 
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4. REPRESENTATIONS OF NILPOTENT LIE ALGEBRAS 
 
We shall first discuss representations of abelian Lie algebras. 
 
Proposition 4.1. Let L  be abelian. Then every irreducible L -module has dimension 1. 

Every linear map C→L  is a 1-dimensional representation of L . 
 
Proof. A 1-dimensional representation of L  is by definition a linear map C→L:λ  such 
that [ ]( ) ( ) ( ) ( ) ( )xyyxxy λλλλλ −= . But the RHS of this equation is zero; since L  is 
abelian the LHS is always zero, too. So every linear map C→L  is a representation of 
L . 
 
Let V  be an irreducible L -module and let Lx∈ ; consider the linear map VV → , 

vxva . Let w  be an eigenvector of this map; i.e. 0≠w  and xwx λ=  for some C∈λ , 
where λ  is the eigenvalue. Let { }vvxVvW λ=∈= , the eigenspace. W  is a subspace 
of V . Since 0≠w , 0≠W . We shall show that W  is a submodule of V . 
 
Let LyWv ∈∈ , . 
 

( ) ( ) [ ]{ ( ) ( ) ( )vyyvyvxyxvyvxxvy

L

λλ ===+=
=
abelian  

0
Q

 

 
So Wvy∈ , which shows that W  is a submodule of V . But V  is irreducible so WV = . 
So vvx λ=  for all Vv∈ . Hence each Lx∈  acts on V  by scalar multiplication. So every 
subspace of V  is a submodule. Hence ( ) 1dim =V . 

 
 
We now recall some linear algebra. 
 
Let nMA∈ . Then the characteristic polynomial of A  is ( ) ( )AtIt n −= detχ . For non-

singular nMT ∈ , A  and ATT 1−  have the same characteristic polynomial: 

 
( ) ( )( )

( ) ( ) ( )
( )AtI

TAtIT

TAtITATTtI

n

n

nn

−=
−=

−=−
−

−−

det

detdetdet

detdet
1

11

 

 
If V  is an n -dimensional vector space over C  and VV →:θ  is a linear map we define 
the characteristic polynomial of θ  to be the characteristic polynomial of any matrix 
representing θ . 
 
( ) [ ]tt C∈χ  factorizes into linear factors: 
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( ) ( ) ( ) rm

r

m
ttt λλχ −−= K1

1  with ji λλ ≠  for ji ≠ . 

 
The iλ  are the eigenvalues, each with multiplicity im . 

 
Question 1: Is there a decomposition of V  into a direct sum of subspaces, one for each 

iλ ? 

 
Answer 1: Yes. 
 
There is an eigenvector Vvi ∈  with eigenvalue iλ , i.e. ( ) iii vv λθ = . The eigenspace for θ  

with respect to the eigenvalue iλ  is 

 
( ) ( ){ }

( ){ }0

,ES

=−∈=
=∈=

vIVv

vvVv

i

ii

λθ
λθλθ

 

 
Question 2: Is ( )( ) ii m=λθ ,ESdim ? 

 
Question 3: Is V  the direct sum of the eigenspaces of the iλ ? 

 
Example. Let ( ) 2dim =V . Let { }21,ee  be a basis for V  and take θ  such that 

0: 21 aa eeθ . The matrix of θ  is 
 









00

10
 

( ) 2

0

1
t

t

t
t =

−
=χ  

 
θ  has eigenvalues 0,0 . The eigenspace of θ  with eigenvalue 0  is 2eC , so  

 
( )( ) 0 ofty multiplici210,ESdim =≠=θ . 

 
So 
 
Answer 2: No. 
 
Answer 3: No. 
 
The generalized eigenspace of θ  with respect to the eigenvalue iλ  is 
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( ) ( ){ }
( ){ }0 s.t. 

 ofpower  someby  dannihilate is ,GES

=−∈∃∈=

−∈=

vINVv

IvVv

N

i

ii

λθ

λθλθ

N
 

 
So, in the above example, ( ) V=0,GES θ . 
 
Proposition 4.2. (The Decomposition Theorem) Let V  be a vector space of dimension n  

over C  and let VV →:θ  be a linear map with characteristic polynomial 

 

( ) ( )∏ =
−=

r

i

m

i
itt

1
λχ  

 

with iλ  distinct and nm
r

i i =∑ =1
. Let ( )iiV λθ ,GES= . Then 

(i) rVVV ⊕⊕= K1 ; 

(ii) ( ) ii mV =dim ; 

(iii) ( ) ii VV ⊆θ ; 

(iv) The characteristic polynomial of 
iV

θ  is ( ) im

it λ− ; 

(v) ( ){ }0=−∈= vIVvV im

ii λθ . 

 
Proof. The proof (omitted) uses the Cayley-Hamilton Theorem, i.e. that ( ) VV →:θχ  

satisfies ( ) 0=θχ . 
 

 
Theorem 4.3. Let L  be a nilpotent Lie algebra and V  an L -module. Let Ly∈  and 

( ) vyvVVy a:: →ρ . Then the generalized eigenspaces iV  of V  with respect to ( )yρ  

are all submodules of V . 
 
Note. This does not hold for arbitrary Lie algebras: we need the nilpotency condition. 
 
Recall. Leibnitz’s formula for differentiation: 
 

( ) ( )( )∑ =
−









=

n

i

iinn gDfD
i

n
fgD

0
 

 
where D  denotes the action of differentiation (once). 
 
We first prove 
 
Proposition 4.4. Let L  be a Lie algebra and V  an L -module. Let Vv∈ , Lyx ∈,  and 

C∈βα , . Then 
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( ) ( ) ( )( ) ( )( ) ( )( )∑ =

− −−




=+−

n

i

iinn
IyxIyvIyvx

i

n

0
ad βαρβαρ  

 
Note. If 0== βα  then 
 

( ) ( )( ) ( )( ) ( )( )∑ =

−





=

n

i

iinn
yxyvyvx

i

n

0
adρρ  

 
Proof. We use induction on n . 
 
If 1=n  then ( ) ( )vxyvx βα +−=LHS  and 
 

( )( ) ( )( )
( ) [ ] vxxyvavxxvy

IyxvIyv

β
βαρ

−+−=
−+−= adRHS

 

 
By the module axioms, RHSLHS = . 
 
Now assume the result for rn = . 
 

( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )∑

∑

=

−

=

−+

+−−




=

+−





 −−





=+−

r

i i

ir

r

i

iirr

IyxIyv

IyIyxIyvIyvx

i

r

i

r

0

0

1 ad

βαρραρ

βαρβαρβαρ
 

 

where ( )ii Iyxx β−= ad . Now 

 
( ) ( ) ( ) ( ) [ ]yxxyyx iii ρρρρρ +=  

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )1

ad

+−=
−+−=+−

ii

iii

xxIy

IyxxIyIyx

ρραρ
βρραρβαρρ

 

 
So 
 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )∑

∑∑

∑∑

+

=

+−

+

=

+−

=

+−

= +
−

=

+−+

−












+





=

−




+−





=

−




+−





=+−

−

−

1

0

1

1

1

1

0

1

0 10

11

1

1

r

i i

ir

r

i i

irr

i i

ir

r

i i

irr

i i

irr

xIyv

xIyvxIyv

xIyvxIyvIyvx

i

r

i

r

i

r

i

r

i

r

i

r

ραρ

ραρραρ

ραρραρβαρ

 
which is 
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( )( ) ( )( )∑ +

=

+− −−




 +1

0

1 ad1r

i

iir
IyxIyv

i

r βαρ  

 
 
We shall call the formula of Proposition 4.4 the Leibnitz formula for Lie algebras. 
 
Proof. (of 4.3.) Consider the map ( ) VVy →:ρ . Let iV  be the generalized eigenspace of 

this map with eigenvalue iλ . Let iVv∈  and Lx∈ . To show that iVvx∈  we require that 

( ) ( )( ) 0=− N

iIyvx λρ  for suitably large N . Apply Leibnitz with iλα = , 0=β : 

 

( ) ( )( ) ( )( ) ( )( )∑ =

−−




=−

N

i

iiN

i

N

i yxIyvIyvx
i

N

0
adλρλρ  

 

iVv∈  so ( )( ) 0=− −iN

iIyv λρ  if iN −  is sufficiently large. Since L  is nilpotent 

( ) 0ad =i
yx  if i  is suitably large. Thus, if N  is suitably large, ( ) ( )( ) 0=− N

iIyvx λρ , and 

so iVvx∈ . Thus, each generalized eigenspace is a submodule of V . 
 

 
Corollary 4.5. If L  is a nilpotent Lie algebra and V  is an indecomposable L -module 

then for all Ly∈  the linear map vyva  has only one eigenvalue. 
 
Proof. We know that rVVV ⊕⊕= K1  for generalized eigenspaces iV  of ( )yρ . These are 

all submodules. Since V  is indecomposable, 1=r . 
 

 
Proposition 4.6. Let L  be a nilpotent Lie algebra and V  an indecomposable L -module. 

Let Ly∈  have a single eigenvalue ( )yλ  on V . Then the map ( )yy λa  is a 1-

dimensional representation of L . 
 
Proof. Let ( ) nV =dim . It is clear that ( )yy λa  is linear. We must also show that 
 

[ ] ( ) ( ) ( ) ( )xyyxxy λλλλλ −= . 
 
The RHS is clearly zero, so we need to show that the LHS is zero as well. Consider the 
trace function: 
 

( )

( )( )tt

A

A

n

i ii

χ

α

in   oft coefficien

 of seigenvalue

tr

1−−=

=

=

∑
∑

 

( ) ( )BAAB trtr =  
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Consider [ ] VVxy →:ρ ; this has only one eigenvalue, [ ]xyλ . 
 

[ ]( ) [ ]xynxy λρ =tr  

[ ]( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

0

trtr

trtr

=
−=
−=

xyyx

xyyxxy

ρρρρ
ρρρρρ

 

 
So [ ] 0=xynλ  and [ ] 0=xyλ , as required. 

 
 
Proposition 4.7. Let L  be a nilpotent Lie algebra and V  an indecomposable L -module. 

Let Ly∈ and let ( )yλ  be the unique eigenvalue of ( )yρ . Define ( ) VVy →:σ  by 

 

( ) ( ) ( )Iyyy λρσ −= . 

 

Then 

(i) σ  is a representation of L ; 

(ii) ( )yσ  is a nilpotent linear map for all Ly∈ . 

 
Proof. (i) We must show that 
 

[ ] ( ) ( ) ( ) ( )xyyxxy σσσσσ −=  
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )
[ ]
[ ] [ ]
[ ]xy

Ixyxy

xy

xyyx

IxxIyyIyyIxx

σ
λσ

ρ
ρρρρ

λρλρλρλρ

=
+=

=
−=

−−−−−=RHS

 

 

(ii) ( )yρ  has characteristic polynomial ( )( )nyt λ− , so ( ) ( ) ( )Iyyy λρσ −=  has 
characteristic polynomial 
 

( )( ) ( )( ) ( )( )
( ) ( )( )

n

n

t

yyt

yIytytI

=

−+=

−+=−

λλ

ρλσ detdet

 

 

So, by the Cayley-Hamilton Theorem, ( )yσ  satisfies ( ) 0=n
yσ . 

 
 
A representation [ ]nML →:σ  is called a nil representation if each matrix ( )yσ  for 

Ly∈  is nilpotent. 
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Proposition 4.8. Let L  be a nilpotent Lie algebra and σ  a nil representation of L . Then 

σ  is equivalent to a representation under which each Lx∈  is represented by a matrix 

with zeroes on and below the principal diagonal. 
 
Proof. Let V  be an L -module giving representation σ . Suppose V  is irreducible. L  is 
nilpotent, so 0=mL  for some m . So 0=mVL . We show that 0=VL  by descending 
induction, i.e. that 00 1 =⇒= −ii VLVL . 
 

Let 1−∈ iLx . ( )xσ  is nilpotent so ( ) 0=k
xσ  for some k , i.e. ( )( ) 0=xxvx K  (with k  

x ’s). So there is a Vv∈  such that 0≠v  and 0=vx . Let U  be the set of all such v ; we 
claim U  is a submodule of V . Let Uu∈ , Ly∈ . 
 

( ) ( ){ [ ]{ 0
0

=+=
∈= iL

yxuyuxxuy  

 
So Uuy∈ ; hence U  is a submodule of V . 0≠U  and V  is irreducible, so VU = . 

Hence, 0=Vx  for all 1−∈ iLx , i.e. 01 =−iVL . 0=mVL  and 00 1 =⇒= −ii VLVL , so 0=VL . 
But in this situation every subspace of V  is a submodule. Since V  is irreducible we have 
that ( ) 1dim =V . So ( ) [ ]10 Mx ∈a . 
 
If the module V  is not irreducible then 
 

010 =⊃⊃⊃= nVVVV K  

 
where each 1+iV  is a maximal proper submodule of iV . V  gives a nil representation, so iV  

gives a nil representation; 1+ii VV  gives a nil representation of L . But 1+ii VV  is 

irreducible, so ( ) 1dim 1 =+ii VV  and ( ) 01 =+ LVV ii , i.e. 1+⊂ ii VLV . 

 
Choose a basis nee ,,1 K  of V  adapted to the chain of subspaces, i.e. 

 

0V  has basis nee ,,1 K , 

1V  has basis nee ,,2 K  

M  
 

1+⊂ ii VxV  so the matrix representing x  with respect to this basis has the required upper 

triangular form. 
 

 
Corollary 4.9. Let L  be a nilpotent Lie algebra and V  an indecomposable L -module. 

Then we can choose a basis for V  such that the matrix representation of x  has the form 
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( )

( )













 ∗

x

x

λ

λ

0

O  

 

i.e. zeroes below the principal diagonal, and all elements on the principal diagonal 

equal. 

 
Proof. Follows from 4.5, 4.6, 4.7 and 4.8. 

 
 
Corollary 4.10. Let L  be a nilpotent Lie algebra and V  an irreducible L -module. Then 

( ) 1dim =V . 
 
We now consider arbitrary L -modules. 
 
Let L  be a nilpotent Lie algebra and V  any L -module. A weight of V  is a 1-
dimensional representation C→L:λ  such that there is a { }0\Vv∈  annihilated by some 

power of ( ) ( )Ixx λρ −  for all Lx∈ , where ( ) vxvVVx a:: →ρ . 
 
If λ  is a weight of V  the corresponding weight space λV  of V  is 

 
( ) ( ){ }LxIxxvVvV ∈∀−∈=   ofpower  someby  dannihilate λρλ  

 

λV  is a subspace of V . 

 
Theorem 4.11. (The Weight Space Decomposition Theorem) Let L  be a nilpotent Lie 

algebra and V  an L -module. Then 

(i) V  has only finitely many weights; 

(ii) V  is the direct sum of its weight spaces; 

(iii) each weight space is a submodule of V ; 

(iv) a basis can be chosen for each λ -weight space λV  such that the matrix 

representation on λV  has the form 

 

( )

( )













 ∗

x

x

x

λ

λ

0

Oa  

 
Proof. V  may be expressed as a direct sum of indecomposable submodules. Each 
indecomposable submodule determines a weight λ  by 4.6. Let λW  be the direct sum of 

all indecomposable components with weight λ . Then λλWV ⊕= . We need to show that 

λλ WV = . 
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Certainly λλ VW ⊆ . Take λVv∈ ; since µµWV ⊕=  we can write ∑= µ µvv  for µµ Wv ∈ . 

For some N , ( ) ( )( ) 0=− N
Ixxv λρ . So ( ) ( )( ) 0=−∑ µ µ λρ N

Ixxv  and each 

( ) ( )( ) µµ λρ WIxxv
N ∈− . So each ( ) ( )( ) 0=− N

Ixxv λρµ . Suppose µλ ≠ , so there is an 

Lx∈  such that ( ) ( )xx µλ ≠ . By 4.9, ( )xρ  is represented on µW  by a matrix of the form 

 
( )

( )













 ∗

x

x

µ

µ

0

O  

 
so ( ) ( )Ixx λρ −  is represented on µW  by 

 
( ) ( )

( ) ( )















−

∗−

xx

xx

λµ

λµ

0

O  

 
Choose Lx∈  such that ( ) ( )xx µλ ≠ . Then the matrix of ( ) ( )Ixx λρ −  is non-singular on 

µW . So the matrix on ( ) ( )( )NIxx λρ −  on µW  is non-singular. So 

 

( ) ( )( ) 00 =⇒=− µµ λρ vIxxv
N . 

 
So 0=µv  for all λµ ≠ . So λµ µ vvv ==∑ . Hence λWv∈ , so λλ WV ⊆ , so λλ WV = . 

 
(i) 00 ≠⇒≠ λλ WV  so λ  is one of the finite number of weights in our decomposition of 

V . So there are only finitely many weights. 
 
(ii) λλWV ⊕=  and λλ WV =  so λλVV ⊕= . 

 
(iii) λλ WV =  is a submodule of V . 

 
(iv) Follows from 4.9. 

 
 
The decomposition λλVV ⊕=  is called the weight space decomposition of V . 
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5. CARTAN SUBALGEBRAS 
 
Proposition 5.1. Let L  be a nilpotent Lie algebra. Then the adjoint representation of L  

is a nil representation. 
 
Proof. The adjoint representation comes from the L -module L  itself, [ ]yxyx a:ad . If 

Ly∈  then we have [ ] 2Lyx ∈ , [ ][ ] 3Lxyx ∈  and so on. But L  is nilpotent, so 0=mL  for 

some N∈m . I.e., [ ][ ]xxyx K  ( 1−m  x ’s) is zero. So ( ) 0ad 1 =−m
x ; xad  is nil. 

 
 
The converse is also true. 
 
Theorem 5.2. (Engel’s Theorem) If L  is a Lie algebra for which the adjoint 

representation is a nil representation then L  is nilpotent. 
 
Proof. Suppose not. Choose a maximal nilpotent subalgebra N  of L . [ ] LLN ⊆ , so we 

can regard L  as an N -module. [ ] NNN ⊆ , so N  is an N -submodule of L . Let M  be 

an N -submodule of L  containing N  such that NM  is an irreducible N -module. Since 

N  is nilpotent, ( ) 1dim =NM  by 4.10. So ( ) ( ) 1dimdim += NM . 
 
L  gives a nil representation of L , and so L  gives a nil representation of N . So M  gives 
a nil representation of N . So NM  gives a nil representation of N , ( )αan , nil if and 

only if 0=α . So ( ) NNxNM ⊆  for all Nx∈ . So [ ] NMN ⊆ . Since 

( ) ( ) 1dimdim += NM , mNM C+= . Hence, 
 

[ ] [ ]
[ ] [ ]

M

N

NN

mNNN

mNmNMM

⊆
=

+⊆
+⊆

++=
C
CC ,

 

 
Thus, M  is a subalgebra of L . Since [ ] NNM ⊆ , we also have that MN < . 
 
We know NM ⊆2 . We shall show that for each 0>i  there exists an integer in  such that 

in
NM i ⊆ . We use induction on i . If 1=i  take 2=in , since NM ⊆2 . Assume the 

statement is true for ri = . Then we have an rn  such that rn
NM r ⊆ . 
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[ ]
[ ]
[ ]
[ ]

mMN

mMNN

mMNM

mNM

MMM

r

r

rr

r

rr

nr

nr

nn

n

nn

ad

ad

ad

,

1

1

+⊆

+⊆

+⊆

+=

=

+

+

C
 

 

We now show by induction on j  that ( ) jnrjn
mMNM rr ad1++ ⊆ . This is true for 1=j ; 

assume it for kj = : 
 

( )knrkn
mMNM rr ad1 +⊆ ++  

[ ] ( )[ ]MmMMNM
knrkn rr ,ad,11 +⊆ +++  

[ ] 111 , +++ ⊆⇒⇒ rrr NMNMNMN <<  
 

So ( ) jnrjn
mMNM rr ad1++ ⊆ . 

 

The adjoint representation of L  is nil, so ( ) 0ad =j
m  for large j . So, for such j , 

11 +⊆+ rn
NM r , so there exists an rn  such that rn

NM r ⊆ . 
 
N  is nilpotent, so 0=rN  for some r , hence 0=rn

M . So M  is nilpotent, which is a 
contradiction. So L  is nilpotent. 

 
 
We now consider arbitrary Lie algebras. Consider elements Lx∈  “as far as possible” 
from 0 , in that 0ad  has all eigenvalues 0 . 
 
We say that Lx∈  is regular if LLx →:ad  has as few eigenvalues zero as possible. 
 
Example. Let [ ] ( ){ }0tr2 =∈= AMAL . ( ) 3dim =L . Basis of L : 
 









=

00

10
e , 








−

=
10

01
h , 








=

01

00
f  

[ ] ehe 2= , [ ] fhf 2−= , [ ] hef =  
 

Lx∈  has the form cfbhae ++  for C∈cba ,, . 
 

[ ] chbeex +−= 2  

[ ] cfaehx 22 −=  

[ ] bfahfx 2+−=  
 
The matrix of xad  with respect to the basis ( )hfe ,,  is 
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















−
−

−

ba

ca

cb

20

202

02

 

 
This has characteristic polynomial 
 

( )( ) ( )

( )acbtt

abcacbabctbbtactbtt

bcctaacbttbt

bta

cta

cbt

+−=

+−−−+−−=

+−+−−+=
−

−
−+

23

2223

2

4

4244222

22222

20

22

02

 

 
So the multiplicity of zero as an eigenvalue is 
 

1 if 02 ≠+ acb  
3 is 02 =+ acb  

 

So 







− ac

ba
 is regular if and only if 0≠

− ac

ba
. 

 
Lemma 5.3. Let M  be a subalgebra of L . Then the set of all Lx∈  such that [ ] MMx ⊆  

is a subalgebra ( )MN  containing M , and ( )MM N< . Moreover, ( )MN  is the 

largest subalgebra in which M  is an ideal. 
 
Proof. Easy – see Exercise Sheet 1. 

 
 
We call ( )MN  the idealizer (or normalizer) of M . 
 
Theorem 5.4. Let x  be a regular element of L . Let ( )0,adGES xH = . Then 

(i) H  is a subalgebra of L ; 

(ii) H  is nilpotent; 

(iii) ( )HH N= . 

 
Proof. (i) Let Hzy ∈, ; we need to show that [ ] Hyz ∈ . By Leibnitz, 
 

[ ]( ) ( ) ( )[ ]∑ =

−








=

n

i

iinn
xzxy

i

n
xyx

0
ad,adad  
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Hy∈ , so ( ) 0ad =−in
xy  if in −  is large. Hz∈ , so ( ) 0ad =i

xz  if i  is large. Hence, 

[ ]( ) 0ad =n
xyz  for large n . So [ ] Hyz ∈ , and H  is a subalgebra. 

 
(iii) We show that ( )HH N= . If ( )Hz N∈  then [ ] HHz ⊆ . Now Hx∈  since [ ] 0=xx . 

So [ ] [ ] Hzxxz ∈, . So [ ]zx  is annihilated by some power of xad . So Hz∈ , so 

( )HH N⊇ , hence ( )HH N= . 
 
(ii) We show that H  is nilpotent by Engel’s Theorem, i.e. we show that the adjoint 
representation of H  is nil. Let ( ) nL =dim , ( ) lH =dim . Choose a basis lee ,,1 K  of H  

and extend to a basis nee ,,1 K  of L . Let Hy∈ , lleey λλ ++= K11 , C∈iλ . Consider 

LLy →:ad . H  is invariant under yad  since H  is a subalgebra. Hence we also have 

HHy →:ad  and HLHLy →:ad . 
 
Let ( )tLχ  be the characteristic polynomial of yad  on L ; let ( )tHχ  be the characteristic 

polynomial of yad  on H ; let ( )tHLχ  be the characteristic polynomial of yad  on HL . 

We claim that ( ) ( ) ( )ttt HLHL χχχ = . LLy →:ad  has a matrix of the block form 

 

( )

( ) ( ) ( )








=

−×−×−

−××

lnlnlln

lnlll

CD

B
A

0
 

 
( ) ( )

( ) ( )
( ) ( )tt

CtIBtI

CtIB

BtI

AtIt

HLH

lnl

ln

l

nL

χχ

χ

=
−−=









−

−
=

−=

−

−

detdet

0
det

det

 

 
Given that lleey λλ ++= K11 , how do the coefficients of ( )tLχ , ( )tHχ  and ( )tHLχ  

depend on the iλ ? The entries in A  are linear functions of the iλ . The coefficients in 

( )tLχ  etc. are polynomial functions of the iλ . 

 
Let ( ) K+++= 2

210 tbtbbtHLχ . We claim that 0b  is not the zero polynomial, for in the 

special case xy =  0b  is non-zero. Let ( ) ( )K+++= 2
210 tataatt m

Hχ , where 0a  is not the 

zero polynomial. We know that lm ≤  since ( )tHχ  has degree l . So ( ) ( )K+= 00batt m

Lχ  

and 00ba  is not the zero polynomial. Choose lλλ ,,1 K  such that 000 ≠ba . For this y  we 

have that yad  has eigenvalue 0 with multiplicity m . So, by the regularity of x , lm ≥ ; 
hence lm = .  
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So ( ) ( )K+= 0att l

Hχ  has degree l , and so is a multiple of lt . Hence ( ) l

H tt =χ  since 

characteristic polynomials are monic. By the Cayley-Hamilton Theorem, HHy →:ad  

satisfies ( ) 0ad =l
y , so the adjoint representation of H  is nil. 

 
Hence, by Engel’s Theorem, H  is nilpotent. 

 
 
The generalized eigenspace of xad  with eigenvalue zero where Lx∈  is regular is called 
a Cartan subalgebra of L . 
 
Any two Cartan subalgebras of L  have equal dimension; this is called the rank of L . 
 
Any Cartan subalgebra is nilpotent and is its own idealizer. 
 
Example. Let [ ] ( ){ }0tr2 =∈= AMAL . 
 









−

=
10

01
h  

 
is a regular element of L . H  will be the Cartan subalgebra given by had . ( ) 1dim =H . 
So 
 









∈







−

== CC a
a

a
hH

0

0
 

 
In general, let H  be a Cartan subalgebra of L . Then [ ] LLH ⊆ , so we can regard L  as 

an H -module and decompose L  as λλ LL ⊕= , where the λL  are the weight spaces of L  

as an H -module. 
 
Consider the special case 0=λ , i.e. C→H:0 . 0L  is the 0-weight space. 

 
Proposition 5.5. HL =0 . Thus, 0 is a weight of H  on L . 

 
Proof. By definition, 
 

( ){ }HxkyxLyL
k ∈=∈=  all and  somefor  0ad0 . 

 
But H  is nilpotent, so 0=rH , so [ ][ ]xxyx K  (with 1−r  x ’s) is zero. So 0LH ⊆ . 

 
Now suppose if possible that 0LH ≠ . Then HL0  is an H -module. By 4.11 the 

representation of H  on HL0  can be given by matrices 
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















00

*0

Oaz  

 
So there is a non-zero element of HL0  that is annihilated by all Hz∈ . So there exists a 

HLy \0∈  such that [ ] Hyz ∈  for all Hz∈ . Hence ( )Hy N∈ . But ( )HH N= , so 

Hy∈ , a contradiction. Hence 0LH = . 
 

 
Hence we have the Cartan decomposition of L  as 
 

( )λλ LHL 0≠⊕⊕=  

 
The non-zero weights are called roots. Let Φ  be the set of all roots – a finite set. Then 
 

( )αα LHL Φ∈⊕⊕=  

 
By Lie multiplication we know that [ ] HHH ⊆  and [ ] αα LHL ⊆ . 

 
Proposition 5.6. Let Φ∈βα , . Then 

(i) βαβα +⊆ LLL ][  if Φ∈+ βα ; 

(ii) 0][ LHLL =⊆βα  if 0=+ βa ; 

(iii) 0][ =βαLL  if Φ∉+ βα  and 0≠+ βα . 

 
Proof. (i) Let αLy∈ , βLz∈ , Hx∈ . By Leibnitz, 

 

[ ] ( ) ( )( )( ) ( )( ) ( )( )[ ]∑ =

− −−




=+−

N

i

iiNN
IxxzIxxyIxxxyz

i

N

0
ad,adad βαβα  

 

αLy∈ , so y  is annihilated by large powers of ( )( )Ixx α−ad ; similarly z  is annihilated 

by large powers of ( )( )Ixx β−ad . So [ ] ( ) ( )( )( ) 0ad =+− N
Ixxxyz βα  for large N . 

Hence, [ ] βα +∈ Lyz . 

 
(ii) If 0=+ βα , [ ] HLyz =∈ 0  by 5.5, so [ ] HLL ⊆−αα . 

 
(iii) If { }0∪Φ∉+ βα  then we deduce that [ ] 0=yz , otherwise there would be a non-

zero element in the ( )βα + -weight space. 
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Consider [ ] HLL ⊆−αα  for Φ∈α , and C→H:β . Consider the restriction 

[ ] C→−ααβ LL: . 

 
Proposition 5.7. Let Φ∈α . Consider the subspace [ ] HLL ⊆−αα . Let Φ∈β . Then β  

restricted to [ ]αα −LL  is a rational multiple of α . 

 
Proof. If Φ∉−α  then 0=−αL  and there is nothing to prove, so assume Φ∈−α . Let 

Φ∈β  and consider the functions 
 

KK ,2,,,,2, βαβαββαβα +++−+− , 
 
all linear functions on H . Since Φ  is finite there exist integers qp,  such that 
 

βαβαββαβα +++−+− qp ,,,,,, KK  
 
are roots but ( ) βα ++− 1p  and ( ) βα ++1q  are not. If ( ) 01 =++− βαp  the result is 

clear; similarly if ( ) 01 =++ βαq . So we can assume that ( ) 01 ≠++− βαp  and 

( ) 01 ≠++ βαq . 
 
Let βαβα ++− ⊕⊕= qp LLM K . M  is a subspace of L . Take αLy∈ , α−∈ Lz . Then 

[ ] HLyz =∈ 0 . 

 
MyM ⊆ad  since yad  takes βα +iL  to ( ) βα ++1iL  and βα +qL  to 0. 

MzM ⊆ad  since yad  takes βα +iL  to ( ) βα +−1iL  and βα +− pL  to 0. 

 
Let [ ] Hyzx ∈= ; MxM ⊆ad  by the above. We now calculate ( )xM adtr  in two different 
ways: 
 

( ) [ ]
( )
( ) ( )

0

adadtradadtr

adadadadtr

adtradtr

=
−=
−=

=

yzzy

yzzy

yzx

MM

M

MM

 

 
xad  acts on βα +iL  as 

 
( )( )

( )( )















+

+

xi

xi

βα

βα

0

*

O  

 
by 4.11. Hence, 
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( ) ( )( ) ( )βαβ

βα ++=
+ iL Lxiax

i
dimadtr  

 
So 
 

( ) ( )

( )( ) ( )
( ) ( ) ( ) ( )∑∑
∑
∑

−= +−= +

−= +

−=

+=

+=

=
+

q

pi i

q

pi i

q

pi i

q

pi LM

LxLix

Lxi

xx
i

βαβα

βα

βα

βα

βα

dimdim

dim

adtradtr

 

 
Equating the two traces gives 
 

( ) ( ) ( )∑∑ −= +

>

−= + −=
q

pi i

q

pi i LixLx βαβα αβ dimdim

0
44 344 21

 

 
And so 
 

( ) ( )
( )
( )∑

∑
−= +

−= +
−=

q

pi i

q

pi i

L

Li
xx

βα

βα
αβ

dim

dim
 

 
So there exists an Q∈αβ ,r  such that αβ αβ ,r=  on [ ]αα −LL . 
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6. THE KILLING FORM 
 
We define a map C→× LL  by ( ) ( )yxyx adadtr, a . Define ( )yxyx adadtr, = . The 

map ( ) yxyx ,, a  is called the Killing form. 

 
Proposition 6.1. (i) ⋅⋅,  is bilinear; 

(ii) ⋅⋅,  is symmetric; 

(iii) ⋅⋅,  is invariant, i.e. [ ] [ ]yzxzxy ,, =  for all Lzyx ∈,, . 

 
Proof. (i) Easy. 
 
(ii) Follows from the identity ( ) ( )BAAB trtr = . 
 
(iii) 
 

[ ] [ ]( )
( )( )
( ) ( )
( ) ( )

( )( )
[ ]( )

[ ]yzx

yzx

yzzyx

yzxzyx

zxyzyx

zxyyx

zxyzxy

,

adadtr

adadadadadtr

adadadtradadadtr

adadadtradadadtr

adadadadadtr

adadtr,

=

=
−=
−=
−=

−=

=

 

 
 
The Killing form is called non-degenerate if 0, =yx  Ly∈∀  0=⇒ x . 

 
The Killing form is identically zero if 0, =yx  Lyx ∈∀ , . 

 
Proposition 6.2. Let LI <  and Iyx ∈, . Then 

LI
yxyx ,, = . Thus, the Killing form of 

L  restricted to I  is the Killing form of I . 
 
Proof. Choose a basis of I  and extend to a basis of L . With respect to this basis, since I  
is an ideal, xad  is represented by a matrix of the block form 
 









0

0

2

1

A

A
 

 
Similarly, yad  is represented by 
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







0

0

2

1

B

B
 

 
So yxadad  is represented by 
 









0

0

12

11

BA

BA
 

 
Thus, ( ) ( )11tradadtr BAyx = . But 1A  is the matrix of xad  on I  and 1B  is the matrix of 

yad  on I . Thus, 
 

( )
LI

yxBAyx ,tr, 11 == . 

 
 
For any subspace M  of L  define the perpendicular space ⊥M  by 
 

{ }MyyxLxM ∈∀=∈=⊥  0, . 

 
⊥M  is also a subspace of L . 

 
Lemma 6.3. LILI << ⊥⇒ . 
 
Proof. Let ⊥∈ Ix  and Ly∈ ; we show that [ ] ⊥∈ Ixy . Let Iz∈ . 
 

[ ] [ ] 0,, == yzxzxy  

 
[ ] Iyz ∈ , ⊥∈ Ix . Hence [ ] ⊥∈ Ixy . 

 
 
In particular, LL <⊥ : 
 

{ }LyyxLxL ∈∀=∈=⊥  0,  

 
So 0=⊥L  iff ⋅⋅,  is non-degenerate; LL =⊥  iff ⋅⋅,  is identically zero. 

 
Proposition 6.4. Let L  be a Lie algebra with 0≠L , LL =2 . Let H  be a Cartan 

subalgebra of L . Then there is an Hx∈  such that 0, ≠xx . 

 
Proof. Consider the Cartan decomposition of L  as an H -module: 
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λλ LL ⊕=  

[ ] [ ] [ ]∑=⊕⊕==
µλ µλµµλλ ,

2 , LLLLLLL  

 
Now [ ] µλµλ +⊆ LLL  by 5.6, where 0=+µλL  if µλ +  is not a weight. Now HL =0 , so, 

since LL =2 , we have 
 

[ ] [ ] [ ]∑∑ Φ∈ −− +==
α ααλ λλ LLHHLLH  

 
Now L  is not nilpotent since LL =2 , but H  is nilpotent, so LH ≠ . So there exists a root 

Φ∈β . β  is a 1-dimensional representation of H , 0≠β . β  vanishes on [ ]HH  since if 

Hyx ∈,  then [ ] ( ) ( ) ( ) ( ) 0=−= xyyxxy βββββ . So [ ]HHH = . 
 
Hence, there exists an Φ∈α  with [ ] 0≠−aLLα . In particular, 0≠−αL . Also, β  does not 

vanish on [ ]αα −LL . Choose [ ]αα −∈ LLx  such that ( ) 0≠xβ . By definition, 

( )xxxx adadtr, = . xad  acts on λL  by 

 
( )

( )















x

x

λ

λ

0

0

O  

 

by 4.11. So ( )2ad x  acts on λL  by 

 

( )

( ) 















2

2

0

0

x

x

λ

λ
O  

 

So ( ) ( )∑= λ λ λ
2dim, xLxx . However, by 5.7 there exists an Q∈αλ ,r  such that 

( ) ( )xrx αλ αλ ,=  since [ ]αα −∈ LLx . So ( ) ( )∑=
λ αλλα 2

,
2 dim, rLxxx . In particular, 

( ) ( )xrx αβ αβ ,= . Now ( ) 0≠xβ , so ( ) 0=xα  and 0, ≠αβr . So 

 

( ) ( )
44 344 21321

0

2
,

0

2 dim,

>≠

∑=
λ αλλα rLxxx  

 
So 0, ≠xx . 

 
 
Theorem 6.5. If the Killing form of L  is identically zero then L  is soluble. 
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Proof. Use induction on ( )Ldim . If ( ) 1dim =L  then L  is certainly soluble. If ( ) 1dim >L , 

LL ≠2  by 6.4, and LL <2 . The Killing form on 2L  is the restriction of that on L , and so 
is identically zero. ( ) ( )LL dimdim 2 < ; by induction 2L  is soluble. 2LL  is abelian, and so 
soluble. Hence L  is soluble. 

 
 
Note. The converse is not true. Consider a Lie algebra of dimension 2, basis { }yx, , with 

[ ] xxy = . 
 









00

01
ad ay , ( ) 








00

01
ad 2

ay  

 

So ( )( ) 1adtr, 2 == yyy . 

 
For which Lie algebras is the Killing form non-degenerate? 
 
Let R  be the soluble radical of L . Then L  is semisimple if and only if 0=R . 
 
Theorem 6.6. The Killing form on L  is non-degenerate if and only if L  is semisimple. 
 
Proof. Suppose the Killing form on L  is degenerate. Then 0≠⊥L . LL <⊥  by 6.3. So the 
Killing form of L  restricted to ⊥L  is the Killing form of ⊥L . Hence, the Killing form of 

⊥L  is identically zero, since 0,, =⇒∈ ⊥ yxLyx . Hence, by 6.5, ⊥L  is soluble. ⊥L  is a 

non-zero soluble ideal of L , and so L  is not semisimple. 
 
Conversely, suppose L  is not semisimple. Then 0≠R , so 
 

( ) ( ) ( ) ( ) 0110 =⊇⊇⊇= − kk RRRRR K  
 
Let ( )1−= kRI ; 0≠I  but 02 =I , and LI < . Choose a basis of I  and extend to a basis of 
L . Let Ix∈  and Ly∈ . With respect to this basis, LLx →:ad  has matrix 
 









0

00

A
 

 
LLy →:ad  has matrix 

 










32

1 0

BB

B
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So LLyx →:adad  has matrix 
 









0

00

1AB
 

 
Hence ( ) 0adadtr, == yxyx . Thus ⊥⊆ LI . Thus 0≠⊥L , which implies that the Killing 

form is degenerate. 
 

 
Suppose 21, LL  are Lie algebras. We can define the direct sum 21 LL ⊕  to be the set of 

pairs ( ) 2121, LLxx ×∈  with ( )( )[ ] [ ] [ ]( )22112121 ,,, yxyxyyxx = . Similarly, we can define 

kLL ⊕⊕K1 . 

 
The 1-dimensional Lie algebra is simple, and is called the trivial simple Lie algebra. 
 
Theorem 6.7. A Lie algebra is semisimple if and only if it is the direct sum of simple 

nontrivial Lie algebras. 
 
Proof. Let L  be a semisimple Lie algebra. If L  is simple L  is nontrivial and there is 
nothing to prove. So assume L  is not simple. Choose a minimal non-zero ideal LI < , 

LI ≠ . Consider ⊥I : LI <⊥  as well. 
 

0, =⇔∈ ⊥ yxIx  for all Iy∈ . 

 
The Killing form is non-degenerate on L . This gives ( )Idim  linearly independent 

conditions on x , since the form is non-degenerate. So ( ) ( ) ( )ILI dimdimdim −=⊥  by the 
Rank-Nullity Formula. 
 
Now consider ⊥∩ II . ⊥∩ II  is an ideal, so the Killing form on ⊥∩ II  is the restriction 
of that on L . But 0,, =⇒∩∈ ⊥ yxIIyx . So ⊥∩ II  is soluble by 6.5. Since L  is 

semisimple, 0=∩ ⊥II . 
 

( ) ( ) ( ) ( )
( ) ( )
( )L

II

IIIIII

dim

dimdim

dimdimdimdim

=
+=

∩−+=+
⊥

⊥⊥⊥

 

 
So ⊥+= IIL , and 0=∩ ⊥II , so ⊥⊕= IIL  as a direct sum of subspaces. Let Ix∈  and 

⊥∈ Iy . Then [ ] [ ] 0=∩⊆∈ ⊥⊥ IIIIxy . So ⊥⊕= IIL  as a direct sum of Lie algebras: 
 

[ ] [ ] [ ]bbaababa ′+′=′++ ',  
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We now show that I  is simple. Let IJ < . 
 

[ ] [ ] [ ] [ ] JJIJIJIJL ⊆=+= ⊥  
 
So J  is an ideal of L  contained in I . But I  is minimal, so either 0=J  or IJ = . 
Hence, I  is simple. 
 
We now show that ⊥I  is semisimple. Let J  be a soluble ideal of ⊥I . 
 

[ ] [ ] [ ] [ ] JJIJIJIJL ⊆=+= ⊥⊥  
 
Thus, J  is a soluble ideal of L . Since L  is semisimple, 0=J , and so ⊥I  is semisimple. 
 
So ⊥⊕= IIL , I  simple and ⊥I  semisimple. By induction, ⊥I  is the direct sum of 
simple nontrivial Lie algebras. Hence, L  has this property. 
 
Conversely, let rLLL ⊕⊕= K1 , where each iL  is simple and nontrivial. iL  is 

semisimple, and so its Killing form is non-degenerate by 6.6. For each i , LLi < . If ji ≠  

and ii Lx ∈ , jj Lx ∈ , then 0, =ji xx . For if Ly∈  then iii Lyxxy ∈= ][ad ; 

jjj Lyxxy ∈= ][ad . So 0]][[adad =∩∈= jijiji LLxyxxxy . Thus 0adad =ji xx , so 

( ) 0adadtr =ji xx , so 0, =ji xx . 

 
We show 0=⊥L . Let ⊥∈Lx , rxxx ++= K1 , ii Lx ∈ . Let ii Ly ∈ . Then 

0,, == iii yxyx , since ⊥∈ Lx . So 0, =ii yx  for all ii Ly ∈ . This implies 0=ix  since 

the Killing form on iL  is non-degenerate. So 0=x , and so 0=⊥L . Hence the Killing 

form on L  is non-degenerate, and so L  is semisimple. 
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7. THE LIE ALGEBRA ( )Cnsl  

 
( ) [ ] ( ){ }0=∈= AtrMA nn Csl  

 
( )Cnsl  is an ideal of the Lie algebra [ ] ( )CnnM gl= . 

 
Theorem 7.1. ( )Cnsl  is a simple Lie algebra. 

 
Proof. Every ideal of ( )Cnsl  is an ideal of [ ]nM . We shall show that if [ ]nMI <  and 

( )CnI sl⊆  then ( )CnI sl=  or 0=I . 

 
Let I  be a non-zero ideal of [ ]nM  contained in ( )Cnsl . Let { }0\Ix∈ . Then 

 

∑∈ qp pqpqExx
,

, C∈pqx  not all zero, 

 
where pqE  is an nn×  matrix with 1 in the ( )qp, th position and zeroes elsewhere. 

 
Case 1: Suppose ji ≠∃  such that 0≠ijx . Then 

 
IExExxE

p pipiq iqiqii ∈−= ∑∑][  

IExExExE jijiijijjjii ∈+=]][[  

IExExExExEE jijiijijjijiijijjjii ∈−=−− 22],[  

 
So IEx ijij ∈4 , 0≠ijx , so IEij ∈ . 

 
Case 2: Suppose 0=ijx  ji ≠∀ . Then ∑= p ppppExx ; 0=∑ p ppx , so not all the ppx  are 

equal. Suppose jjii xx ≠ . 

 
( ) IExxxE ijjjiiij ∈−=][  

 
So IEij ∈ . 

 
So in either case IEij ∈  for some ji ≠ . Let jiq ,≠ . Then IEEE iqiqij ∈=],[ . So I  

contains all iqE  with iq ≠ . Let qip ,≠ . Then IEEE pqiqpi ∈=],[ . So IEpq ∈  for all 

qp ≠ . For qp ≠ , IEEEE qqppqppq ∈−=],[ . So nI sl= . Hence, ( )Cnsl  is simple. 
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It is easy to see that ( )( ) 1dim 2 −= nn Csl ; assume 2≥n . We now find a regular element 

of ( )Cnsl . 

 
Proposition 7.2. Let 

 

( )Cn

n

x sl∈















=

λ

λ

0

01

O  

 

with 0=∑ i iλ  and jiji λλ ≠⇒≠ . Then x  is regular. 

 
Proof. Take a basis of ( )Cnsl : 

 
{ } { }nnnnij EEEEEEjiE −−−∪≠ −− 1,133222211 ,,, K  

 
Consider the matrix of xad  with respect to this basis: 
 

( ) ijijij ExE λλ −=][  for ji ≠  

0],[ 1,1 =− ++ xEE iiii  

 
So the ( ) ( )11 22 −×− nn  matrix of xad  with respect to this basis is 
 






















−

O

O

O

0

0

0

ij
λλ

 

 
The characteristic polynomial is ( )∏ ≠

− +−
ji ji

n tt λλ1 ; the multiplicity of zero as an 

eigenvalue of xad  is 1−n . 
 
Now let ( )Cny sl∈ . yad  is similar to a matrix in Jordan canonical form, say 

 

 

( )

( )















rm

m

r
J

J

µ

µ

0

011

O  ( )∗

 
where ( )µmJ  is the mm×  matrix 
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

















µ

µ
µ

0

1

01

O

O
 

 
( ) mmm JIJ += µµ , where ( )0mm JJ = . k

mJ  has 1’s on the k th diagonal above the principal 

diagonal and zeroes elsewhere. We claim that ( )µmJ  commutes with any matrix of the 

form K+++ 2
mmm JJI ββα , so ( )∗  commutes with all matrices of the block form 

 



































r

r

r

rr

α
β

α
βα

α
β

α
βα

0

0

0

0

0

0

1

1

1

11

O

O
L

MOM

L
O

O

 

 
These matrices form a vector space of dimension nmmm r =+++ K21 . 
 
Assume 011 =++ rrmm αα K , i.e. the matrix is in ( )Cnsl . We have a vector space of 

dimension 1−n . All these matrices lie in the zero eigenspace of yad , so the multiplicity 
of zero as an eigenvalue of yad  is at least 1−n . 
 
Thus, x  is regular. 

 
 
Proposition 7.3. The subalgebra of diagonal matrices in ( )Cnsl  is a Cartan subalgebra. 

 
Proof. Let 
 
















=

n

x

λ

λ

0

01

O  

 

ji λλ ≠  for ji ≠ , 0=∑ i iλ . x  is regular. Let 
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( )















∈
















∗

∗
= CnH sl

0

0

O  

 
( ) 1dim −= nH . If Hy∈  then [ ] 0=yx , so ( ) ( )0,adGES0,adES xxH ⊆⊆ . But 

 
( ) ( )( )0,adGESdim1dim xnH =−= . 

 
Thus, H  is a Cartan subalgebra of ( )Cnsl . 

 
 
Proposition 7.4. Let ( )CnL sl=  and let H  be the diagonal subalgebra. Then 

 

( )
ijji EHL C≠⊕⊕=  

 

is the Cartan decomposition of L  with respect to H . 
 
Proof. Clearly ( )

ijji EHL C≠⊕⊕=  as a direct sum of vector spaces. Let 

 
HEEh nnn ∈++= λλ K111 . 

 
Then [ ] ( ) ijijij EhE λλ −= . So ijEC  is an H -module giving a 1-dimensional representation 

 

0

0

01

≠−
















ij

n

λλ
λ

λ
aO  since ji ≠ . 

 
So this 1-dimensional representation of H  is a weight and ijEC  lies in the weight space. 

 
( ) ( ) ( ) ( ) ( )∑ ∑+==+ ijEHLH Cdimdimdimspaceweight dimdim  

 
So ijEC  is the full weight space, giving ( )ijji EHL C≠⊕⊕=  as a direct sum of Lie 

algebras. 
 

 
Summary. ( ) [ ]0  traceof matrices nnn ×=Csl . ( )Cnsl  is simple. 
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














=
















= ∑ =

0

0

0

1

1
n

i i

n

H λ
λ

λ
O  

 
is a Cartan subalgebra. ( )ijji EHL C≠⊕⊕= . The roots are 

 

ij

n

λλ
λ

λ
−
















aO

0

01

 for ji ≠ . 
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8. THE CARTAN DECOMPOSITION 
 
Throughout this chapter, let L  be a semisimple Lie algebra and H  a Cartan subalgebra 
of L . 
 

λλ LL ⊕= , λ  weights – the Cartan decomposition 

 

0LH =  

( )αα LHL Φ∈⊕⊕=  

 
Proposition 8.1. If λLx∈ , µLy∈ , µλ −≠  then 0, =yx . 

 
Proof. 

( )yxyx adadtr, =  

λ+⊆ VV LxL ad  

µλ++⊆ VV LyxL adad  

 
So if 0≠+ µλ  then VV ≠++ µλ . Choose a basis of L  adapted to a Cartan 
decomposition. yxadad  is then represented by a block matrix with zero blocks on the 
diagonal: 
 



















∗

∗

0

0

0

O
 

 
So ( ) 0adadtr, == yxyx . 

 
 
Proposition 8.2. If Φ∈α  then Φ∈−α . 
 
Proof. Suppose if possible that Φ∉−α . Then 0=−αL  and 0≠αL . Let αLx∈ . 

0, =yx  for all λLy∈ , for all λ . Hence 0, =yx  for all Ly∈ . But ⋅⋅,  is non-

degenerate, so 0=x . Thus 0=αL , a contradiction. 
 

 
Proposition 8.3. The Killing form of L  remains non-degenerate on restriction to H ; i.e. 

if Hx∈  and 0, =yx  for all Hy∈  then 0=x . 
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Note. We are saying that the Killing form of L  restricted to H  is non-degenerate, not 
that the Killing form of H  is non-degenerate. In fact, the Killing form of H  is 
degenerate since H  is nilpotent. 
 
Proof. Let Hx∈  satisfy 0, =yx  for all Hy∈ . We also have 0, =yx  for all λLy∈ , 

0≠λ , by 8.1. So 0, =yx  for all Ly∈ . So 0=x . 

 
 
Proposition 8.4. [ ] 0=HH ; i.e. H  is abelian. 
 
Proof. Suppose [ ]HHx∈  and let Hy∈ . 
 

( )yxyx adadtr, =  

λλ LL ⊕= , each λL  an H -module. 

 
On λL  we have xad  represented by 

 
( )

( )













 ∗

x

x

λ

λ

0

O  

 
and yad  represented by 
 

( )

( )













 ∗

y

y

λ

λ

0

O  

 
Hence, yxadad  is represented by 
 

( ) ( )

( ) ( )













 ∗

yx

yx

λλ

λλ

0

O  

 
So ( ) ( ) ( ) ( )∑==

λ λ λλ yxLyxyx dimadadtr, . Let Hhh ∈21, . Then 

 
[ ] ( ) ( ) ( ) ( ) 0122121 =−= hhhhhh λλλλλ  
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Since λ  is a 1-dimensional representation. Hence ( ) 0=xλ  for all [ ]HHx∈ , so 

0, =yx  for all Hy∈ . Since ⋅⋅,  is non-degenerate, 0=x . So [ ] 0=HH ; i.e. H  is 

abelian. 
 

 
Let ∗H  denote the dual space of H , ( )C,Hom H . Then ( ) ( )HH dimdim =∗ . We can 

define a map ∗→ HH , ∗hha , by ( ) xhxh ,=∗  for Hx∈ . 

 
Lemma 8.5. The map ∗hha  is an isomorphism of vector spaces. 
 
Proof. The map is clearly linear. Suppose h  is in the kernel of this map, i.e. 0=∗h . Then 

0, =xh  for all Hx∈ . Since the Killing form is non-degenerate, 0=h . So the kernel is 

trivial. 
 

( ) ( ) ( ) ( ) ( )∗==−= HHH dimdimkerneldimdimimagedim  
 

 
Let Φ∈α . Then ∗∈Hα , so there is a unique Hh ∈α  such that ( ) xhx ,αα =  for all 

Hx∈ . 
 
Proposition 8.6. The αh , as defined above, and taken over all Φ∈α , span H . 

 
Proof. Suppose not. Then there is an Hx∈ , 0≠x , such that 0, =xhα  for each Φ∈α . 

Hence ( ) 0=xα  for all Φ∈α . Let Hy∈ . 
 

( ) ( ) ( ) ( )∑==
λ λ λλ yxLyxyx dimadadtr,  

 
Since ( ) 0=xλ  for all weights λ , 0, =yx  for all Hy∈ . So 0=x , a contradiction. 

 
 
Proposition 8.7. For Φ∈α , [ ]ααα −∈ LLh , a subspace of H . 

 
Proof. Consider αL  as an H -module: it contains a 1-dimensional submodule αeC , 

0≠αe . [ ] ( ) αα α exxe =  for Hx∈ . Let α−∈ Ly . We show that [ ] ααα heyye ,= . To see 

this let [ ] ααα heyyez ,−=  and let Hx∈ . 
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[ ]
[ ] ( )

( ) ( )
0

,,

,,

,,,,

=

−=

−=

−=

xeyeyx

xeyxey

xheyxyexz

αα

α

αα

αα

ααα

 

 
So 0, =xz  for all Hx∈ , so 0=z . So [ ] ααα heyye ,= . We can find α−∈ Ly  such that 

0, ≠αey . If not, αe  is orthogonal to α−L  and to each λL  with αλ −≠ , so ⊥∈ Leα , so 

0=αe , a contradiction. Choose such a y , then 

 

[ ]ααα
α

α LLe
ey

y
h −∈








=

,
 

 
 
Proposition 8.8. Let Φ∈α . Then 0, ≠αα hh . 

 
Proof. Let Φ∈β . We know that [ ]ααα LLh −∈ . There exists Q∈αβ ,r  such that αβ αβ ,r=  

on [ ]ααLL− . 

 

( ) ( ) αααβααβααβ αβ hhrhrhhh ,, ,, ===  

 

If 0, =αα hh  then 0, =αβ hh  for all Φ∈β . But the set { }Φ∈ββh  spans H . Hence 

0, =αhx  for all Hx∈ . This implies 0=αh , so 0=α , a contradiction. 

 
 
Theorem 8.9. If Φ∈α  then ( ) 1dim =αL . 

 
Note. Of course, ( ) ( )0dimdim LH =  is not generally 1. 

 
Proof. Let M  be the subspace of L  given by 
 

K⊕⊕⊕⊕= −− ααα 2LLheM aCC  

 
where αeC  is a 1-dimensional H -submodule of αL . There are only finitely many 

summands since Φ  is finite. Recall from the proof of 8.7 that there is an αα −− ∈ Le  such 

that [ ] ααα hee =− . Also, for any α−∈ Ly , [ ] ααα heyye ,= . 

 
We first show that MeM ⊆αad : 
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[ ] 0=ααee  

[ ] [ ] ( ) αααααα α ehheeh −=−=  

 
Let α−∈Ly . Then 

 
[ ] αααα hheyye C∈= ,  

[ ] ( )ααα 1−−− ⊆ ii LeL  for 2≥i  

 
Secondly, we show that MeM ⊆−αad . 

 
[ ] ααα hee −=−  

[ ] [ ] ( ) ααααααα α −−−− ∈=−= Lehheeh  

[ ] ( )ααα 1+−−− ⊆ ii LeL  for 1≥i  

 
[ ] ααα hee =− , so MhM a ⊆ad . We now calculate ( )αhM adtr  in two different ways. 

 
( ) ( ) 0adadadadtradtr =−= −− αααα eeeeh aMM  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )K

K

K

−−−=

−−−=
−−−−+=

−−

−−

−−−

αααα

ααα

αααααααα

α
ααα

2

2

32

dim2dim1,

dim2dim1

dim3dim2dim0adtr

LLhh

LLh

hLhLhaLhhM

 

 
Since 0, ≠αα hh , ( ) ( ) 0dim2dim1 2 =−−− −− Kαα LL . Since Φ∈−α , ( ) 1dim ≥−αL . 

Hence ( ) 1dim =−αL  and ( ) 0dim =− αiL  for 2≥i . 

 
So, interchanging αα −↔ , we have that for each Φ∈α , ( ) 1dim =αL  and ( ) 0dim =αiL  

for 2≥i , N∈i . 
 

 
We have the following easy corollary: 
 
Corollary 8.10. If Φ∈α , Φ∈αm  and Z∈m  then 1±=m . 
 
Now let Φ∈βα , , αβ ±≠ . Consider 
 

βαβαβαββαβα ++++−+− qp ,,2,,,, KK  
 
There are integers qp,  such that all of the above are roots but ( ) βα ++− 1p  and 

( ) βα ++1q  are not roots. This collection is called the α -chain of roots through β . 
 



MA453 LIE ALGEBRAS 

- 48 - 

Note that ( ) ( ) 01,1 ≠+−++ αβαβ pq , so ( ) 01 =++ αβ qL , ( ) 01 =+− αβ pL . Let 

 

βαβα ++− ⊕⊕= qp LLM K . 

 
Choose αα Le ∈ , αα −− ∈Le  such that [ ] ααα hee =− . We claim that MeM ⊆αad , 

MeM ⊆−αad  and MhM ⊆αad . 

 

( ) βααβα +++ ⊆ 1ad ii LeL  

( ) βααβα +−−+ ⊆ 1ad ii LeL  

 
So MhM ⊆αad . We now calculate ( )αhM adtr  in two different ways: 

 
( ) ( ) 0adadadadtradtr =−= −− αααα eeeeh aMM  

 

( ) ( )( )∑ −=
+=

q

piM hih αα βαadtr  since ( ) 1dim =+βαiL . 

 

So ( )( ) 0=+∑ −=

q

pi
hi αβα ; ( ) ( ) ( ) 0=+∑∑ −=−=

q

pi

q

pi
hhi αα βα . 

 

⇒  
( ) ( )( ) ( ) 0,1,2

1
2

1 =+++− ++
αβαα hhqphh

qqpp  

⇒  ( )( ) ( ) 0,1,12 =+++++−
αβαα hhqphhqp

pq

⇒  qphhhh −=αααβ ,,2  

 
Thus we have proved: 
 
Proposition 8.11. Let Φ∈βα , , αβ ±≠ . Take the α -chain of roots through β , 

 

βαβαββαβα +++−+− qp ,,,,, KK . 

 

Then 

 

qp
hh

hh
−=

αα

βα

,

,2
. 

 
Corollary 8.12. If Φ∈α , Φ∈ξα  and C∈ξ  then 1±=ξ . 
 
Proof. If 1±≠ξ  set ξαβ = . Then 
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qp
hh

hh
−== ξ

αα

βα
2

,

,2
 

 
So Z∈ξ2 . If Z∈ξ  then 1±=ξ  by 8.10. If Z∉ξ  then qp ≡/  modulo 2 . The α -chain 
of roots through β  is  
 

βαβαββαβα +++−+− qp ,,,,, KK  
 

But αβ 2
qp−= , with p  and q  not both zero. So 2

α  appears in the α -chain. This implies 

Φ∈2, αα , which contradicts 8.10. 
 

 

Proposition 8.13. For all Φ∈βα , , Q∈βα hh , . 

 

Proof. If αβ ±≠  then by 8.11 Q∈ααβα hhhh ,, . We show that Q∈αα hh , . 

 
( )

( )

∑
∑

Φ∈

Φ∈

=

=

=

β βα

β α

αααα

β
2

2

,

adadtr,

hh

h

hhhh

 

Q∈













=∑ Φ∈β

αα

βα

αα

2

,

,

,

1

hh

hh

hh
 

 

So Q∈αα hh , ; so Q∈βα hh , . 
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9. THE ROOT SYSTEM AND THE WEYL GROUP 

 

{ }Φ∈ααh  spans H , so we can find a subset { }
l

hh αα ,,
1
K  that forms a basis for H ; 

( ) lH =dim . 

 

Proposition 9.1. Let Φ∈α . Then ∑ =
=

l

i i i
hh

1 αα µ  for some Q∈iµ . 

 

Proof. We know this for C∈iµ . Let Q∈= ijji
hh ξαα , . The matrix ( )ijξ=Ξ  is non-

singular, since if it were singular we would have lηη ,,1 K  not all zero such that 

0
1

=∑ =

l

i ijiξη . Then 

 

0,
11

==∑∑ ==

l

i iji

l

i i ii
hh ξηη αα  

 

So 0,
1

=∑ =
xh

l

i i iαη  for all Hx∈ . ⋅⋅,  is non-degenerate, so all 0=iη , which is a 

contradiction. 

 

llll

ll

l
hh

hh

ξµξµ

ξµξµ

αα

αα

++=

++=

K

M

K

11

1111

,

,
1

 

 

We have l  linear equations in l  unknowns with a non-singular coefficient matrix, all the 

entries of which are rational. Hence, by Cramer’s Rule, there is a unique solution 

( ) l

i Q∈µ  

 
 

Let QH  be the set of all ∑ =

l

i i i
h

1 αµ , Q∈iµ . ( ) lH =QQdim . QH  is independent of the 

choice of basis; all QHh ∈α . 

 

Let RH  be the set of all ∑ =

l

i i i
h

1 αµ , R∈iµ . ( ) lH =RRdim . 

 

Proposition 9.2. Let RHx∈ . Then 0, ≥∈Rxx  and 00, =⇔= xxx . 

 

Proof. Let RHx∈ , ∑ =
=

l

i i i
hx

1 αµ . 

 



MA453 LIE ALGEBRAS 

 - 51 - 

( )
( ) ( )

( ) ( )
( )( )∑ ∑

∑ ∑ ∑
∑ ∑ ∑
∑ ∑
∑ ∑

=

=

=

=

=

Φ∈

α α

α αα

α αα

αα

αα

αµ

ααµµ

ααµµ

µµ

µµ

2

adadtr

,,

i i

i j ji

i j ji

i j ji

i j ji

i

ji

ji

ji

ji

h

hh

hh

hh

hhxx

 

 

So R∈xx,  and 0, ≥xx . Suppose 0, =xx . Then for all Φ∈α , ( ) 0=∑ i i i
hααµ . In 

particular, ( ) 0=∑ i ji i
hααµ  for lj ,,1K= ; 0, ==∑∑ i ijii i ji

hh ξµµ αα  for all j . Ξ  is 

non-singular, so 0=iµ  for all i , so 0=x . 

 
 

So all RHh ∈α ; ( ) lH =RRdim . We introduce a total order on RH : let RHx∈ , 

∑= i i i
hx αµ . If 0≠x  we say 0fx  if the first non-zero iµ  is positive; if 0≠x  we say 

0px  if the first non-zero iµ  is negative. We have trichotomy: for each RHx∈  precisely 

one of 0=x , 0px , 0fx  is true. 

 

So, for Φ∈α , 0pαh  or 0fαh . Define 0pα  if 0pαh  and 0fα  if 0fαh . Define 

 

{ }0fαα Φ∈=Φ+ , the positive roots, and 

{ }0pαα Φ∈=Φ− , the negative roots. 

 

Clearly, −+ Φ∪Φ=Φ . 

 

A fundamental root is a positive root that is not the sum of two positive roots. Let Π  be 

the set of fundamental roots. 

 

Proposition 9.3. (i) Every positive root is a sum of fundamental roots. 

(ii) { }Π∈ααh  is a basis of RH . 

(iii) If Π∈βα ,  and βα ≠  then 0, ≤βα hh . 

 

Proof. (i) Let +Φ∈α . If Π∈α  we are done. If Π∉α  the there exist +Φ∈γβ ,  such 

that γβα +=  with αγβ p, . Repeat to get the result. 

 

(iii) Let Π∈βα ,  with βα ≠ . Then Φ∉− βα  since if not 

 

( ) ββαα +−=  or ( ) ααββ +−=  
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so either α  or β would be a sum of positive roots. Consider the α -chain of roots 

through β : 

 

 βαβαβ ++ q,,, K  

⇒  qqp
hh

hh
−=−=

αα

βα

,

,
2  by 8.11.

⇒  0, ≤βα hh  since 0, ≥αα hh  by 9.2.

 

(ii) By (i), the αh  for Φ∈α  span H . We show the αh  are linearly independent. Suppose 

not: then there exist R∈iµ  not all zero such that 

 

0=∑ Π∈i i
hiα αµ  

 

Rearrange this sum, taking all the positive iµ  to one side. Then 

 

sjsjriri
hhhhx jjii αααα µµµµ ++=++= KK

1111
 

0, >
vu ji µµ , vu ji ,  distinct for ru ≤≤1 , sv ≤≤1 . 

 

Then 

 

0,,
1111

≤++++=
sjsjriri

hhhhxx jjii αααα µµµµ KK  

 

by (iii). So 0=x , a contradiction. 
 

 

Note. +Φ  can be chosen in many different ways. However, Π  is determined by +Φ  and 
+Φ  is determined by Π . 

 

Example. Let ( )CnL sl= . The roots are 

 

ij

n

λλ
λ

λ
−
















aO

0

01

 for ij ≠  

 

Define +Φ  to be the roots with ij > . Then the fundamental roots are 
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ii

n

λλ
λ

λ
−

















+1

1

0

0

aO  for 11 −≤≤ ni  

( ) ( ) ( )1121 −+++ −++−+−=− jjiiiiij λλλλλλλλ K  

( ) lnH =−= 1dim , the rank of L . 

 

For each Φ∈α  we define RR HHs →:α  by 

 

( ) α
αα

α
α h

hh

xh
xxs

,

,
2−=  

 

αs  is linear and ( ) ααα hhs −= . The set of x  such that 0, =xx  forms a hyperplane i.e. a 

subspace of codimension 1. αs  is the reflection of RH  in the hyperplane orthogonal to 

αh . 

 

id2 =αs  

αα −= ss  

 

Let W  be the group of all non-singular linear maps RR HH →  generated by 

{ }Φ∈ααs . W  is called the Weyl group.
†
 

 

Proposition 9.4. (i) W  is a finite group. 

(ii) W  is a group of isometries, i.e. for all RHyx ∈, , Ww∈ , ( ) ( ) yxywxw ,, = . 

(iii) For each Φ∈α  and Ww∈  there is a Φ∈β  such that ( ) βα hhw = . 

 

Proof. (ii) Let RHyx ∈, . Then 

 

( ) ( )

yx

hh
hh

yhxh

hh

yhxh
yx

h
hh

yh
yh

hh

xh
xysxs

,

,
,

,,
4

,

,,
4,

,

,
2,

,

,
2,

2

=

−−=

−−=

αα
αα

αα

αα

αα

α
αα

α
α

αα

α
αα

 

 

So αs  is an isometry; so w  is an isometry for all Ww∈ . 

 

(iii) Now consider ( )βα hs : 

                                                 
† After Hermann Weyl. 
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( ) ααα −= hhs  

( ) ααα hhs =−  

 

So suppose αβ ±≠ . Consider the α -chain of roots through β , 

 

βαββα ++− qp ,,,, KK  

 

( )
( )

( )αβ

αβ

α
αα

βα
ββα

pqh

hqph

h
hh

hh
hhs

−+=

−−=

−=
,

,
2

 

 

Now ( ) Φ∈−+ αβ pq  since qqpp ≤−≤− . So αs  permutes the βh  for Φ∈β . Hence 

Ww∈  permutes the βh  for Φ∈β . Note that 

 

( )( ) ( ) ( )βαβαβαβ +++−=+−+ qppq  

 

so αs  inverts the βh  in a given α -chain. 

 

(i) We have a homomorphism from W  to the  group of permutations of the αh  for 

Φ∈α . Φ  is finite, so the image of this homomorphism is finite. If Ww∈  is in the 

kernel then ( ) αα hhw =  for all Φ∈α . Since the αh  span RH , id=w . Hence, W  is finite. 

 
 

Proposition 9.5. Given any root Φ∈α  there exists a fundamental root Π∈iα  and a 

Ww∈  such that ( )
i

hwh αα = . 

 

Proof. Each Φ∈α  has the form llnn ααα ++= K11 , Z∈in . If +Φ∈α  then all 0≥in ; 

if −Φ∈α  then all 0≤in . We may assume +Φ∈α  since if −Φ∈α  then use 

( )ααα −= hsh . The quantity lnn ++K1  is called the height of α , ( )αht . We use induction 

on ( )αht . If ( ) 1ht =α  we are done, so assume ( ) 1ht >α . By 8.12, at least two 0>in . 

 

∑=<
i i hhnhh

i αααα ,,0  

 

All 0≥in , so there exists i  such that 0, >αα hh
i

. Let ( ) βαα hhs
i

= . 
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i

ii

i h
hh

hh
hh α

αα

αα
αβ

,

,
2−=  

i

ii

i

hh

hh
ααβ

αα

αα

,

,
2−=  

 

So ( ) ( )αβ htht < . Passing from α  to β  changes only one in , hence β  has at least one 

0>jn , so +Φ∈β . By induction, ( )
j

hw αβ ′=  for some Ww ∈′  and some Π∈jα . Thus, 

taking Wwsw
i

∈′= α , 

 

( ) ( ) ( )
jjii

hwhwshsh αααβαα =′== . 

 
 

Proposition 9.6. The Weyl group W  is generated by 
l

ss αα ,,
1
K  for { }lαα ,,1 K=Π . 

 

Proof. Suppose 0W  is the subgroup generated by { }Π∈ii
s αα . To show 0WW =  we 

show 0Ws ∈α  for all Φ∈α . The proof of 9.5 shows that ( )
i

hwh αα =  for some Π∈iα  

and some Ww∈ . Consider 0

1 Wwws
i

∈−
α . 

 

( ) ( ) ( ) αααααα hhwhwshwws
iiii

−=−==−1  

 

Let RHx∈  be such that 0, =xhα . Then 

 

⇒  ( ) ( ) 0, 11 =−− xwhw α  

⇒  ( ) 0, 1 =− xwh
iα  

⇒  ( ) ( ) xxwwxwws
i

== −− 11

α  

 

Hence, αα swws
i

=−1 . Then 0Ws ∈α , so 0WW = . 

 
 

Example. ( )C3sl=L ; ( ) 8dim =L . 

 
















=++
















= 0

00

00

00

321

3

2

1

λλλ
λ

λ
λ

H  

 

( ) 2dim =H . 
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313221132312 EEEEEEHL CCCCCC ⊕⊕⊕⊕⊕⊕=  

 

Let 

 
















=

3

2

1

00

00

00

λ
λ

λ
h  

( )
ijijij EhE λλ −=][  

 

The roots are 

 

121 : λλα −ah  232 : λλα −ah  1321 : λλαα −+ ah  

211 : λλα −− ah  322 : λλα −− ah  3121 : λλαα −−− ah  

( ){ }2121 ,, αααα +±±±=Φ  

{ }21,αα=Π  

 

Consider the corresponding vectors Hh ∈α . Let 

 

Hh ∈















=

3

2

1

00

00

00

λ
λ

λ
, Hh ∈
















=′

3

2

1

00

00

00

µ
µ

µ
 

 

( )
( )( ) ( )( ) ( )( )

( )( )
( ) ( )( ) ( )
( )
( )hh

hhhh

′=
++=

+++++++−++=
+++++−++=

−−+−−+−−=

′=′

tr6

6

224

2222

222

adadtr,

332211

332211321321332211

231332123121332211

131323231212

µλµλµλ
µλµλµλµµµλλλµλµλµλ

µλµλµλµλµλµλµλµλµλ
µµλλµµλλµµλλ

 

 

1α
h  satisfies ( ) 121,

1
λλαα −== hhh , so 

 















−
=

000

010

001

6

1
1α

h  

 

Similarly, 
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














−=

100

010

000

6

1
2αh  

 

For RHx∈  define xxx ,= . With this notation, 31
21
== αα hh  and 

 

( )
6

1

6

1

6

1 16,
21

−=−=αα hh  

 

The angle between 
1α

h  and 
2αh  is given by the cosine formula: 

 

θαααα cos,
2121

hhhh =  

32πθ =  

 

1α
h

1α−
h

2α−
h

2α
h

21 αα +h

21 αα −−h
 

 

{ }
21212121122121

,,,,id, αααααααααααααα +=== sssssssssssssW  

 



MA453 LIE ALGEBRAS 

 - 58 - 

10. THE DYNKIN DIAGRAM 

 

We shall consider the geometrical properties of the αh  for Φ∈α . 

 

Proposition 10.1. Let Φ∈βα , , αβ ±≠ . Then 

(i) the angle between α  and β  is one of 

 

6π , 4π , 3π , 2π , 32π , 43π , 65π ; 

 

(ii) if the angle is 3π  or 32π , αh  and βh  have the same length; 

(iii) if the angle is 4π  or 43π , the ratio of the lengths of αh  and βh  is 2 ; 

(iv) if the angle is 6π  or 65π , the ratio of the lengths of αh  and βh  is 3 . 

 

Proof. Let αβθ  be the angle between αh  and βh . We have 

 

 αββαβα θcos, hhhh =  

⇒  αβββααβα θ2
2

cos,,, hhhhhh =

⇒  
ββ

αβ

αα

βα
αβθ

hh

hh

hh

hh

,

,2

,

,2
cos4 2 =  

 

By 8.11, both factors on the RHS are integers, so Z∈αβθ2cos4 . 1cos0 2 <≤ αβθ , so 

4cos40 2 <≤ αβθ , so { }3,2,1,0cos4 2 ∈αβθ . 

 

⇒  { }
2

3

2

1
2
12 ,,,0cos ±±±∈αβθ  

⇒  { }65,6,43,4,32,3,2 πππππππθαβ ∈
 











=

ββ

αβ

αα

βα

αβθ
hh

hh

hh

hh

,

,

,

,2 22cos4  

 

Suppose αβθ  is 3π  or 32π , so 1cos4 2 =αβθ . ( )( )1.11.11 −−== , so βα hh = . 

 

Suppose αβθ  is 4π  or 43π , so 2cos4 2 =αβθ . ( )( ) ( )( )1.22.11.22.12 −−=−−=== . So 

one of αα hh ,  and ββ hh ,  is twice the other, so one of αh , βh  is 2  times the other. 

 

Suppose αβθ  is 6π  or 65π , so 3cos4 2 =αβθ . ( )( ) ( )( )1.33.11.33.13 −−=−−=== . So, 

as above, one of αh , βh  is 3  times the other. 
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Proposition 10.2. Let Φ∈α . Then every α - chain of roots has at most four roots in it. 

 

Proof. Consider the α - chain of roots through β  with β  as the first root: 

 

βαβαβ ++ q,,, K  

 

By 8.11, qhhhh −=ααβα ,,2 . The LHS is 2,1,0 −−  or 3−  by 10.1. So 3≤q . So the 

length of the α -chain is at most 4. 
 

 

Let  

 

ii

ji

hh

hh
aij

αα

αα

,

,
2=  

 

and ( )ijaA = . A  is called the Cartan matrix; the ija  are the Cartan integers. 

 

Proposition 10.3. The Cartan matrix has the following properties: 

(i) for each i , 2=iia ; 

(ii) for ji ≠ , { }3,2,1,0 −−−∈ija ; 

(iii) 12 −=⇒−= jiij aa ; 13 −=⇒−= jiij aa ; 

(iv) 00 =⇔= jiij aa . 

 

Proof. If ji ≠  then jiijaa=αβθ2cos4 . 

(i) Clear. 

(ii) Follows from 10.1, 9.3. 

(iii) Follows from 10.1. 

(iv) Clear. 
 

 

We incorporate this information into a graph. The Dynkin
†
 diagram is a graph ∆  with l  

vertices, one for each fundamental root. If ji ≠  then vertices ji,  are joined by 

jiijij aan =  edges, 30 ≤≤ ijn . The Dynkin diagram may be disconnected, as in 

 

 
 

                                                 
† After E.B. Dynkin. Also due to H.S.M. Coxeter. 
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It splits into connected components and the Cartan matrix splits into corresponding 

blocks; off-diagonal blocks are zero: 

 

















∗

∗
=

0

0

OA  

 

We define a corresponding quadratic form Q : 

 

( ) ∑∑ ≤≠≤=
−=

lji jiij

l

i il xxnxxxQ
11

2

1 2,,K  

 

Recall the correspondence between quadratic forms on R  and real symmetric matrices: 

 

( )
ijmM =  symmetric 

∑= ji jiij xxmxMx
,

T  

 

The matrix of ( )lxxQ ,,1 K  is 

 























−−
−−
−−

2

2

2

2

2313

2312

1312

OOO

O

O

nn

nn

nn

 

 

Proposition 10.4. The quadratic form ( )lxxQ ,,1 K  is positive definite, i.e. ( ) 0,,1 ≥lxxQ K  

and ( ) 00,, 11 ===⇔= ll xxxxQ KK . 

 

Proof. 

ijjiijij naa ==θ2cos4  

ijij n−=θcos2  

ijjiji
hhhh θαααα cos, =  

( ) yyh
h

x
h

h

x
xx

hh

hh
xxQ

j

j

i

il

ji jil j

j

i

iji

ji

,2,2
,

2,,
1,1 === ∑∑∑ = α

α
α

ααα

αα
K  

 

where ∑= i i ii
hhxy αα . So ( ) 0,,1 ≥lxxQ K . If ( ) 0,,1 =lxxQ K  then 0, =yy , so 

0=y , so all 0=ix . The converse is clear. 
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Recall. Any quadratic form can be diagonalized; there exists a non-singular real ll ×  

matrix P  such that DPMP =T , a diagonal matrix. Let 1−= xPy ; then TT yDyxMx = . 

 

Proposition 10.5. Let ( )ijmM =  be an ll ×  real symmetric matrix. Then the associated 

quadratic form ∑ ji jiij xxm
,

 is positive definite if and only if all leading minors of M  

have positive determinant. (The leading minors are 

 

( ) M
mm

mm
m ,,,

2221

1211

11 K







.) 

 

Proof. We use induction on l . Assume the quadratic form is positive definite. If 1=l , 

( )11mM = . 00 11

2

11 >⇔> mxm . Suppose 1>l . ∑ =

l

ji jiij xxm
1,

 is still positive definite as 

it is the original with 0=lx . By induction, the first 1−l  leading minors of M  have 

positive determinant; we require that ( ) 0det >M . TT yDyxMx = , D  diagonal with 

entries 0,,1 >ldd K . Now if DPMP =T , 

 

( ) ( ) ( ) 0detdetdet
2 >= DMP . 

 

Conversely, suppose that all leading minors of M  have positive determinant. The same 

is true of the smaller ( ) ( )11 −×− ll  leading minor. By induction, ∑ −

=

1

1,

l

ji jiij xxm  is positive 

definite. So we have a diagonal form in new coordinates lyy ,,1 K : 

 

∑∑ −

=

−

=
=

1

1

21

1,

l

k kk

l

ji jiij xdxxm  with 0>kd . 

2

1111

1

1

2

1,
22 lllll

l

k kk

l

ji jiij exxyexyexdxxm ++++= −−
−

== ∑∑ K  

 

This may be diagonalized by a further transformation of coordinates: 

 

id

e

ii xyz
i

i+=  

 

We get 22

11

2

11 lll fxzdzd ++ −−K . So there is a non-singular P  such that 

 



















=
−

f

d

d

PMP
l

0

0

1

1

T
O

 

( ) ( ) ∏ −

=
=

1

1

2
detdet

l

i idfMP  
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We assume ( ) 0det >M , so 0
1

1
>∏ −

=

l

i idf , so 0>f . Thus, the form is positive definite. 

 
 

We consider graphs with the following properties: 

(i) the graph is connected; 

(ii) any two distinct vertices are joined by 0, 1, 2 or 3 edges; 

(iii) the associated quadratic form is positive definite. 

 

The Dynkin diagram of a semisimple Lie algebra has connected components satisfying 

(i)-(iii). It is possible to determine all graphs satisfying (i)-(iii). 

 

Theorem 10.6. The only graphs satisfying (i)-(iii) are 

 

1A  2A  3A  … 
lA  

   …  
 

2B  

 

3B  

 

4B  

 

…

 

lB  

  …

 

4D  

 

5D  

 

… 

 

lD  

 

… 

 
 

6E  

 

7E  

 

8E  

   
 

4F  

 

2G  

 
 

 

 

Proof. The given graphs clearly satisfy (i) and (ii). We show that they satisfy (iii). We 

show ( )lxxQ ,,1 K  is positive definite by induction on l . If 1=l  we have ( ) 2

11 2xxQ = , 

which is positive definite. Suppose 1>l . There is a vertex l  such that when it is removed 

we have another graph on the list. By induction, ( )11 ,, −lxxQ K  is positive definite, so all 

leading minors of the matrix of ( )11 ,, −lxxQ K  have positive determinant. To complete the 

induction we show that the matrix of ( )lxxQ ,,1 K  has positive determinant. 

 

Let lY  be a graph of l  vertices and ly  the determinant of the matrix of the associated 

quadratic form. In the case 1=l , 221 ==a . In the case 2=l  we have 
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3
21

12
2 =

−
−

=a  

2
22

22
2 =

−
−

=b  

1
23

32
2 =

−
−

=c  

 

Suppose 3≥l . Remove a vertex l  joined to just one other vertex 1−l  by a single edge. 

If lY  is the given graph, let 1−lY  be the graph with vertex l  removed in this way, and let 

2−lY  be the graph with vertices l  and 1−l  removed in this way. 

 

( ) ( )( ) 2121 2112

2100

12

0

0

det −−−− −=−−−=

−
−

== llllll yyyyYy

L

M

 

  

Hence: 

 

Type lA  12 21 +=⇒−= −− laaaa llll  

Type lB  22 21 =⇒−= −− llll bbbb  

Type lD  42 2

134 =−= aad  

42 345 =−= add  

4=⇒ ld  by induction 

Type 6E  32 456 =−= ade  

Type 7E  22 567 =−= dee  

Type 8E  12 678 =−= eee  

Type 4F  12 234 =−= abf  

Type 2G  12 =g  

 

Hence, ( )lxxQ ,,1 K  is positive definite in each case. 

 

In order to show the converse, i.e. that the graphs on our list are the only possible ones, 

we shall first require some additional results. 

 

Proposition 10.7. For each of the following graphs the corresponding quadratic form 

( )lxxQ ,,1 K  has determinant zero. 
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2

~
A  3

~
A  … 

lA
~

 

  
… Etc. 

 

3

~
B  

 

4

~
B  

 

5

~
B  

 

…

 

lB
~

 

  
… Etc. 

 

2

~
C  

 

3

~
C  

 

4

~
C  

 

…

 

lC
~

 

 … Etc. 

 

4

~
D  

 

5

~
D  

 

… 

 

…

 

lD
~

 

 
… … Etc. 

 

6

~
E  

 

7

~
E  

 

8

~
E  

 

  

 

4

~
F  

 

2

~
G  

 
 

 

 

Proof. In most cases we can calculate the determinant as before, but not in types lA
~

, lC
~

. 

 

Type lA
~

 

0

211

10

1

0121

112

=

−−
−

−
−−

−−

O

O  
since the row 

sum is ( )0,,0 K

Type lC
~

 

( )( ) 0222

2200

22

0

0

1 =−−−=

−
−

−ll bb

L

M

Type lB
~

 022.22
~ 22

133 =−=−= abb  

Type lD
~

 024.22
~ 33

144 =−=−= add  

Type 6

~
E  063.22~

566 =−=−= aee  
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Type 7

~
E  042.22~

677 =−=−= dee  

Type 8

~
E  021.22~

788 =−=−= eee  

Type 4

~
F  021.22

~
344 =−=−= bff  

Type 2

~
G  021.22~

122 =−=−= agg  

 
 

Lemma 10.8. Let Y  be a graph in which any two vertices are joined by at most three 

edges. Suppose the corresponding quadratic form is positive definite. Suppose Y ′  is a 

graph obtained from Y  by omitting some of the vertices, or by reducing the number of 

edges, or both. Then the quadratic form for Y ′  is also positive definite. 

 

We call Y ′  a subgraph of Y . 

 

Example. 

 

=′Y  is a subgraph of =Y   

 

Proof. The quadratic form for Y  is 

 

( ) ∑∑ ≤≠≤=
−=

lji jiij

l

i il xxnxxxQ
11

2

1 2,,K . 

 

The quadratic form for Y ′  is 

 

( ) ∑∑ ≤≠≤=
′−=′

mji jiij

m

i im xxnxxxQ
11

2

1 2,,K , 

 

with lm ≤  and ijij nn ≤′ . Suppose Q′  is not positive definite. Then there exists 

( ) 0,,1 ≠myy K  with ( ) 0,,1 ≤′
myyQ K . Consider ( )0,,0,,,1 KK myyQ . This is 

 

( )m

mji jiij

m

i i

mji jiij

m

i imji jiij

m

i i

yyQ

yyny

yynyyyny

,,

2

22

1

11

2

11

2

11

2

K′≤

−≤

′−≤−

∑∑
∑∑∑∑

≤≠≤=

≤≠≤=≤≠≤=

 

 

So ( ) ( ) 0,,0,,0,,, 11 ≤′≤ mm yyQyyQ KKK . So ( )lxxQ ,,1 K  is not positive definite, a 

contradiction. 
 

 

We now return to the proof of 10.6. 

 

Suppose Y  is some graph satisfying conditions. (i)-(iii). By 10.7 and 10.8 we know that 

no graph of the form FEDCBA
~

,
~

,
~

,
~

,
~

,
~

 or G
~

 can be obtained as a subgraph of Y . 
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(a) Y  contains no cycles, for otherwise Y  would have a subgraph of the form lA
~

. 

 

(b) If Y  has a triple edge then 2GY = , for otherwise Y  would have 2

~
G  as a subgraph. 

 

(c) Suppose Y  has no triple edge. Then Y  can have no more than one double edge, for 

otherwise Y  has a subgraph of type lC
~

. 

 

(d) Suppose Y  has one double edge. Then Y  has no branch point, for otherwise Y  has 

lB
~

 as a subgraph. 

 

(e) If the double edge is not at one end then 4FY = , for otherwise Y  has a subgraph 4

~
F . 

If the double edge is at one end, lBY = . 

 

(f) Now suppose Y  has only single edges. Then Y  cannot have a branch point with four 

or more branches, for otherwise Y  has 4

~
D  as a subgraph. 

 

(g) Y  can have no more than one branch point, for otherwise Y  has a subgraph lD
~

, 

5≥l . 

 

(h) If Y  has no branch points, lAY = . So suppose Y  has just one branch point with three 

branches of lengths 321 lll ≤≤ , llll =+++ 1321 . Then 11 =l , for otherwise Y  would have 

6

~
E  as a subgraph. 

 

(i) If 121 == ll , lDY = . Also, 22 ≤l , for otherwise Y  has 7

~
E  as a subgraph. 

 

(j) So assume 11 =l , 22 =l . Then 43 ≤l , for otherwise Y  has 8

~
E  as a subgraph.  

 

63 2 EYl =⇒=  

73 3 EYl =⇒=  

83 4 EYl =⇒=  

 
 

Corollary 10.9. Every Dynkin diagram of a semisimple Lie algebra has connected 

components of type 4876 ,,,,,, FEEEDBA lll  and 2G . 

 

The Cartan matrix ( )ijaA =  determines the Dynkin diagram since jiijij aan = . However, 

the Dynkin diagram does not always determine the Cartan matrix. Recall that the ija  

satisfy 
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2=iia  

{ }3,2,1,0∈ija  for ji ≠  

 

If 1=ijn  then 1== jiij aa . If 2=ijn  then ( ) ( )1,2, −−=jiij aa  or ( )2,1 −− . If 3=ijn  then 

( ) ( )1,3, −−=jiij aa  or ( )3,1 −− . In this last case the Dynkin diagram is 2G . We have 

 









−

−
=

23

12
A  or 








−

−
21

32
 

 

and one is obtained from the other by re-labeling the vertices. 

 

Suppose 2=ijn . If 2=l  the possibilities for the Cartan matrix are 

 









−

−
=

22

12
A  or 








−

−
21

22
, 

 

again obtainable from one another by re-labeling. If 3≥l  there are two possible Cartan 

matrices: 

 























−
−

−
−

=

22

12

21

12

O

OOO

O

lB  























−
−

−
−

=

21

22

21

12

O

OOO

O

lC  

















−
−−

−
=

220

121

012

3B  
















−
−−

−
=

210

221

012

3C  

321
2 ααα hhh ==  

321 2

1
ααα hhh ==  

  
 

We place an arrow on the Dynkin diagram when we have a double or triple edge; the 

arrow points from the longer root to the shorter one. For example, with 2G : 

 

shortlong  
 

Theorem 10.10. The possible Cartan matrices with connected Dynkin diagrams are (up 

to permutation of the numbering of the vertices): 
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





















−
−

−
−

=

21

12

21

12

O

OOO

O

lA  























−
−

−
−

=

22

12

21

12

O

OOO

O

lB  























−
−

−
−

=

21

22

21

12

O

OOO

O

lC  



























−
−

−−

−
−

=

201

021

112

21

12

O

OOO

O

lD  



























−
−

−−
−−−

−−
−

=

21

210

121

10121

121

12

6E  





























−
−

−−
−−−

−−
−−

−

=

21

210

121

10121

121

121

12

7E  

































−
−

−−
−−−

−−
−−

−−
−

=

21

210

121

10121

121

121

121

12

8E  



















−
−−

−−
−

=

2100

1220

0121

0012

4F  







−

−
=

23

12
2G  
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11. THE INDECOMPOSABLE ROOT SYSTEMS 

 

A root system is called indecomposable if it has a connected Dynkin diagram. 

 

Case 1=l . We have only one possibility, 1A : 

 

1A  

 
 

 

1α
h

1α−
h

 
 

 

{ }1α±=Φ  

1α
sW = ; 2=W  

 

Case 2=l . Here we have three possibilities 

 

2A  2B  2G  

   
 

Type 2A . 

 

1α
h

1α−
h

2α−
h

2α
h

21 αα +h

21 αα −−h
 

 

( ){ }2121 ,, αααα +±±±=Φ  

 

Type 2B . 
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1α
h

1α−
h

2α
h

2α−
h

212 αα +h
21 αα +h

21 αα −−h
212 αα −−h

 
 

( ) ( ){ }212121 2,,, αααααα +±+±±±=Φ  

 

(In the above diagram, the dashed lines indicating the reflection axes are shown slightly 

offset for clarity.) 

 

Type 2G . 

 

1α
h

1α−
h

2α
h

21 αα +h
212 αα +h

213 αα +h

21 23 αα +h

21 23 αα −−h

2α−
h

21 αα −−h
212 αα −−h

213 αα −−h

 
 

( ) ( ) ( ) ( ){ }2121212121 23,3,2,,, αααααααααα +±+±+±+±±±=Φ  
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(Again, the dashed lines indicating the reflection axes are shown slightly offset.) 

 

Case 3≥l . Type lA . It is convenient to describe the root system of type lA  in a 

Euclidean space of dimension 1+l . 

 

Let V  be an ( )1+l -dimensional Euclidean space. Let { }nεε ,,0 K  be an orthogonal basis 

of vectors of the same length, so ijji Kδεε =,  for some 0>K . 

 

1 2 1−l lL
 

 

Define 101
εεα −=h , 212

εεα −=h , …, lll
h εεα −= −1 . The 

i
hα  are linearly independent. 

 

Khh
ii

2, =αα  

0, =
ji

hh αα  if 1,,1 +−≠ iiij  

Khh
ii

−=
+1

, αα  

1
2

2

,

,
2 1

1, −=
−

== +

+
K

K

hh

hh
a

ii

ii

ii

αα

αα
 

 

Thus for suitable K  the 
i

hα  form a fundamental system of roots of type lA . Let 0V  be 

the subspace spanned by these vectors; ( ) lV =0dim . Consider the map VV →  given by 

10 εε ↔ , ii εε a  for 2≥i . 

 

11 αα hh −a  

212 ααα hhh +a  

ii
hh αα a  for 2≥i  

 

This is 
1α

s . Similarly, the linear map VV →  such that ii εε ↔−1 , all others fixed, is 
i

sα . 

 

W  is generated by 
l

ss αα ,,
1
K . The group generated by all transpositions ( )ii εε 1−  is 

isomorphic to 1+lS . So we have a homomorphism VSl →+1 . This map is surjective; it is 

also injective, since any permutation of { }nεε ,,0 K  that fixes each 
i

hα  is the identity. 

Hence, 1+≅ lSW . 

 

Each αh  has the form )(
i

hwh αα =  for some Ww∈  and some i . Hence 

 

{ }ljiji ≤≠≤−=Φ 0εε . 
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So ( )1+=Φ ll . 

 

Type lB . 

 

1 2 1−l lL

 
 

Let V  be a Euclidean space of dimension l  with basis { }lεε ,,1 K  such that 

ijji Kδεε =, . Define 

 

l

ll

l

l

h

h

h

h

ε

εε

εε

εε

α

α

α

α

=

−=

−=

−=

−− 1

32

21

1

2

1

M  

 

These form a fundamental system of vectors of type lB . 

 

ll
hhh ααα 2

11
===

−
K  

0, =
li

hh αα  for 21 −≤≤ li  

Khh
ll

−=
− αα ,
1

 

1
2

2

,

,
2

11

1 −=
−

=
−−

−

K

K

hh

hh

ll

ll

αα

αα
 

 

21:
1

εεα ↔s  and leaves others fixed, 

32:
2

εεα ↔s  and leaves others fixed, 

M  

lll
s εεα ↔−− 1:

1
 and leaves others fixed, 

lll
s εεα −a:  and leaves others fixed. 

 

l
ssW αα ,,

1
K= ; for Ww∈ , ( ) jiw εε ±= . !2 lW l= . Each αh  has the form )(

i
hwh αα =  

for some Ww∈  and some i . Hence, 

 

{ } { }lilji iji ≤≤±∪≤≠≤±±=Φ 11 εεε  
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( ) 22 221222
2

lllll
l =+−=+




=Φ  

 

Type lC . 

 

1 2 1−l lL

 
 

Let V  be a Euclidean space of dimension l  with basis { }lεε ,,1 K  such that 

ijji Kδεε =, . Define 

 

l

ll

l

l

h

h

h

ε

εε

εε

α

α

α

2

1

21

1

1

=

−=

−=

−−

M
 

 

W  is the same as for lB . For Ww∈ , ( ) jiw εε ±= . !2 lW l= . The αh  are the vectors 

ji εε ±±  (for ji ≠ ) and iε2± . Hence,  

 

( ) 22 221222
2

lllll
l =+−=+




=Φ  

 

Type lD . 

 

1 2

1−l

l

L 2−l

 
 

Let V  be a Euclidean space of dimension l  with basis { }lεε ,,1 K  such that 

ijji Kδεε =, . Define 

 

ll

ll

l

l

h

h

h

εε

εε

εε

α

α

α

+=

−=

−=

−

−−

1

1

21

1

1

M
 

 

This is a fundamental system of roots of type lD . 
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21:
1

εεα ↔s  and leaves others fixed, 

M  

lll
s εεα ↔−− 1:

1
 and leaves others fixed, 

lll
s εεα ma1: −±  and leaves others fixed. 

 

For Ww∈ , ( ) jiw εε ±= . There will be an even number of sign changes, so !2 1lW l−= . 

The αh  have the form ji εε ±±  for ji ≠ . So 

 

( ) ( )1242
2

12

2
−==





=Φ −

ll
lll

 

 

Type 4F . 

 

1 2 3 4

 
 

Let V  be a 4-dimensional Euclidean space with basis { }4321 ,,, εεεε , ijji Kδεε =, . 

 

211
εεα −=h  

322
εεα −=h  

33
εα =h  

( )43212
1

4
εεεεα +−−−=h  

 

This is a fundamental system of vectors of type 4F . 
321

,, ααα sss  permute 321 ,, εεε  and 

change signs arbitrarily. 

 

( )
( )
( )
( )















+−+

+++↔

+=++−−

+=+−+−

+=+−−

4321

43212
1

4

343212
1

3

243212
1

2

143212
1

1

4

4

4

4
:

εεεε
εεεεε

εεεεεε

εεεεεε

εεεεεε

α

α

α

α

a

a

a

a

h

h

h

s  

 

Let { }Φ∈= ααhS . 

 

{ } Sjiji ⊆≤≠≤±± 31εε  

{ } Sii ⊆≤≤± 31ε  
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( ) S∈±±±± 43212
1 εεεε  

{ } Sii ⊆≤≤±± 314εε  

S∈± 4ε  

 

So S  contains 

 

ji εε ±±  for 41 ≤≠≤ ji  

iε±  for 41 ≤≤ i  

( )43212

1 εεεε ±±±±  

 

This collection of vectors is closed under the actions of 
41

,, αα ss K . 

 

4824.22 42

2

4 =++




=Φ  

 

(We have 24 short roots and 24 long ones.) 

 

Type 8E . 

 

3 421 5 6 7

8  
 

Let V  be a Euclidean space of dimension 8 with basis { }81 ,, εε K  such that 

ijji Kδεε =, . Define 

 

( )876543212
1

7

76

76

21

8

7

6

1

  type

εεεεεεεε

εε

εε

εε

α

α

α

α

+++++++−=













+=

−=

−=

h

D

h

h

h

M

 

87 αhha =  

Khh −=
87

, αα  

1
2

2

,

,
2

77

87 −=
−

=
K

K

hh

hh

αα

αα
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These vectors form a fundamental system of type 8E . 
71

,, αα ss K  permute 71 ,, εε K  and 

change an even number of signs. 

 

( )
88 2

1
814

1 3: αα εεεεε hs iii +=−+++− KKa  

 

Let { }Φ∈= ααhS . S  contains ji εε ±±  for 71 ≤≠≤ ji . S  contains ∑ =

8

12
1

i iε  so S  

contains ( ) ( )8787612
1

8
εεεεεε α +=++−−− sK . So S∈+ 87 εε . So S  contains 8εε ±± i  

for 71 ≤≤ i . S  also contains ( )812
1 εε ±±± K  with an even number of negative signs. So 

S  contains 

 

ji εε ±±  for 81 ≤≠≤ ji  

( )812
1 εε ±±± K  with an even number of negative signs 

 

This is the whole of S , for it is invariant under 
81

,, αα ss K : this is clear for 
71

,, αα ss K  but 

requires a little work to check for 
8α

s . So the roots of 8E  are 

 

ji εε ±±  for 81 ≤≠≤ ji  

∑ =
±

8

12
1

i iε  where ( ) 1=±Π  

 

24022 72

2

8 =+




=Φ  

 

Type 7E . 

 

3 421 5 6

7  
 

Take V  as before – ( ) 8dim =V . Take 0V  to be the subspace of V  perpendicular to 

81 εε − . ( ) 7dim 0 =V  and 
82

,, αα hh K  form a basis of 0V . This is a fundamental system of 

type 7E . Consider ( ){ }7EhS Φ∈= αα . This set lies in ( ){ } 08 VEh ∩Φ∈αα . This 

intersection is 

 

ji εε ±±  for 72 ≤≠≤ ji  

( )81 εε +±  

( )87212
1 εεεε +±±± K  where ( ) 1=±Π  

( )87212
1 εεεε −±±±− K  where ( ) 1=±Π  
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All of these can be obtained from 
82

,, αα hh K  by means of 
82

,, αα ss K . This is obvious 

except for ( )81 εε +± . 

 

( )87212
1

21:
8

εεεεεεα +−−−↔+ Ks  

 

So ( ) S∈+± 81 εε . So S  is 

 

ji εε ±±  for 72 ≤≠≤ ji  

( )81 εε +±  

( )87212
1 εεεε +±±± K  where ( ) 1=±Π  

( )87212
1 εεεε −±±±− K  where ( ) 1=±Π  

 

( ) 552

7 2222
2

6 +++




=Φ E  

 

Type 6E . 

 

321 54

6  
 

We proceed as before. 
83

,, αα hh K  form a fundamental system of vectors of type 6E . Let 

0V  be the subspace of V  for 8E  that is orthogonal to 81 εε −  and 82 εε − . ( ) 6dim 0 =V  and 

83
,, αα hh K  form a basis of this space. 

 

( ){ } ( ){ } 086 VEhEh ∩Φ∈⊆Φ∈ αα αα  

 

The αh  in 0V  are 

 

ji εε ±±  for 73 ≤≠≤ ji  

( )873212
1 εεεεε +±±±+ K  where ( ) 1=±Π  

( )873212
1 εεεεε −±±±−− K  where ( ) 1=±Π  

 

All of these are obtainable from 
83

,, αα hh K  by 
83

,, αα ss K . 

 

( ) 72222 442

6 2

5 =++




=Φ E  

 

Theorem 11.1. The number of roots in each of the indecomposable root systems is 
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lA  lB  lC  lD  6E  7E  8E  4F  2G  

( )2+ll  ( )12 +ll  ( )12 +ll  ( )12 −ll 78 133 248 52 14 
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12. THE SEMISIMPLE LIE ALGEBRAS 

 

Theorem 12.1. (a) If a semisimple Lie algebra L  has connected Dynkin diagram ∆  then 

L  is simple. 

(b) If L  is a semisimple Lie algebra whose Dynkin diagram ∆  has connected 

components r∆∆ ,,1 K  then rLLL ⊕⊕= L1  where iL  is a simple Lie algebra with 

Dynkin diagram i∆ . 

 

Proof. (a) Let ( )αα LHL Φ∈⊕⊕=  be a Cartan decomposition with connected Dynkin 

diagram ∆ . Let LI <≠0 . We first show that 0≠∩HI . Suppose not, i.e. that 

0=∩ HI . Let Ix∈≠0  with ∑+=
α ααµ ehx  and the number of non-zero αµ  as small 

as possible. Let 0≠βµ . 

 

[ ] [ ] ( )∑∑ ==
α αβαα βααβ αµµ ehhexh  

 

By 8.7 we can choose β−e  with βββ hee =− ][ . 

 

[ ][ ] ( ) ( )∑
Φ∈−

Φ∈
−−− +−=

βα
α

βαβαβαβββββ αµβµ eNhhhexh ,  

 

Iexh ∈− ]][[ ββ  is non-zero since 

 

( )
{

0,

00

≠−=−
≠≠

βββββββ µβµ hhhhh
43421

 

 

The number of non-zero αµ  with Φ∈− βα  is less than before, a contradiction. Hence, 

0≠∩HI . 

 

We next show that HI ⊇ . Suppose not. Then HHI ⊂∩⊂0 . HI ∩  is not orthogonal 

to all 
i

hα , Π∈iα . For suppose HI ∩  is not orthogonal to 
i

hα . Let HIx ∩∈  be such 

that 0, ≠
i

hx α . Then 

 

[ ] ( ) Iexhexxe
iiii i ∈== αααα α ,  

 

So Ie
i
∈α . So Ihee

iii
∈=− ααα ][ . So for each Π∈iα  either 0, =∩

i
hHI α  or Ih

i
∈α . 

Both classes are non-empty. Choose Ih
j
∉α ; then 0, =∩

j
hHI α . This means ∆  is 

disconnected, a contradiction. Hence, IH ⊆ . 

 

Now let Φ∈α . 



MA453 LIE ALGEBRAS 

 - 80 - 

 

[ ] ( ) ααααααα α ehhehhe
321

0

,

≠

==  

 

So Ie ∈α . Hence I  contains H  and all αe . So LI = ; L  is simple. 

 

(b) Suppose ∆  is the disjoint union of connected components r∆∆ ,,1 K . Then Π  is the 

union of orthogonal components rΠΠ ,,1 K . Let iH  be the subspace spanned by 

{ }ih Π∈αα . Then rHHH ⊕⊕= K1  and the iH  are mutually orthogonal. Now 

consider αs  for some iΠ∈α . Then α  transforms iH  into itself and fixes each vector in 

jH  for ij ≠ ; ( )
jj HHs =α . Since the αs  for Π∈α  generate W , ( )

jj HHw =  for each 

Ww∈ . 

 

For each Φ∈α , ( )
i

hwh αα =  for some Ww∈  and some i . So iHh ∈α  for some i . Let 

{ }ii Hh ∈Φ∈=Φ αα . Then rΦ∪∪Φ=Φ K1 . Let iL  be the subspace of L  spanned 

by iH  and the αL  with iΦ∈α . We see that rLLL ⊕⊕= K1  as a direct sum of vector 

spaces. 

 

To see that iL  is a subalgebra of L  it is sufficient to show that ii Lee ∈⇒Φ∈ ][, βαβα . 

If Φ∉+ βα  then 0][ =βαee . If αβ −=  then iHhee ∈−=− ααα ][ . If Φ∈+ βα  then 

iΦ∈+ βα  and iHhhh ∈+=+ βαβα . So iL  is a subalgebra. 

 

We next check that 0][ =⇒≠ jiLLji . Let iΦ∈α , jΦ∈β . 

 

0][ =βαhh  

0][ =βαeh  since 0, =βα hh  

0][ =βαhe  since 0, =βα hh  

0][ =βαee  since Φ∉+ βα  

 

βα hh +  does not lie in any kH , iHh ∈α , jHh ∈β . So 0][ =jiLL  for ji ≠ : 

 

[ ] [ ] [ ]rrrr yxyxyyxx ++=++++ KKK 1111 ,  

 

So rLLL ⊕⊕= K1  as a direct sum of Lie algebras. We now see that each iL  is 

semisimple. Let iLI <  be soluble. 0][ =jIL  if ji ≠ , so LI < . I  is a soluble ideal of L , 

but L  is semisimple, so 0=I , so iL  is semisimple. 
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We now show that iH  is a Cartan subalgebra of iL . H  is a Cartan subalgebra of L , so 

there is a regular element Lx∈  such that H  is the 0-(generalized) eigenspace of xad . 

Since Hx∈  and rHHH ⊕⊕= K1  we can write rxxx ++= K1  with ii Hx ∈ . 

 





≠
=

→
ji

jiL
Lx

j

ji
0

:ad  

 

So the 0-eigenspace of xad  on L  is the direct sum of the 0-eigenspaces of the ixad  on 

the iL . x  is regular in L  if and only if each ix  is regular in iL . So each ix  is regular in 

iL  and the 0-eigenspace of ixad  in iL  is iH . So iH  is a Cartan subalgebra of iL . 

 

( )αα LHL
iii Φ∈⊕⊕=  

 

is a Cartan decomposition of iL . So iΦ  is the root system of iL ; iΠ  is a fundamental 

root system of iL ; the Dynkin diagram of iL  is i∆ . But i∆  is connected, so iL  is simple 

by (a). 
 

 

We next consider simple Lie algebras with a given indecomposable Cartan matrix A . 

 

Existence Problem: Is there a simple Lie algebra with given Cartan matrix A ? 

 

Isomorphism Problem: Are any two such Lie algebras isomorphic? 

 

Let L  be a simple Lie algebra and H  a Cartan subalgebra of L : 

 

( )αα LHL Φ∈⊕⊕=  
−+ Φ∪Φ=Φ  

 

For each +Φ∈α  choose αα Le ∈≠0 ; αα eL C= . Choose αα −− ∈Le  such that 

ααα hee =− ][ . If { }lαα ,,1 K=Π  then the 
i

hα  and αe  form a basis of L . βαβα +⊆ LLL ][  so 

βαβαβα += eNee ,][  if Φ∈+ βα , βα −≠ . 

 

0][ =
ji

hh αα  

ααααα ehhhe
ii

,][ =  

ααα hee =− ][  



 Φ∈+

= +

otherwise0
][

, βαβαβα
βα

eN
ee  

 

The βα ,N  are called the structure constants. 
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Proposition 12.2. The structure constants βα ,N  satisfy 

(i) αββα ,, NN −= ; 

(ii) if Φ∈γβα ,,  have 0=++ γβα  then αγγββα ,,, NNN == ; 

(ii) if Φ∈δγβα ,,,  have 0=+++ δγβα  and no pair have sum zero then 

 

0,,,,,, =++ δβαγδαγβδγβα NNNNNN  

 

(if Φ∈ηξ , , ξη −≠ , Φ∉+ξη  take 0, =ηξN ); 

(iv) if Φ∈βα ,  have Φ∈+ βα  then 

 

( )
ααβαβα hh

qp
NN ,

2

1
,,

+
−=−−  

 

where the α -chain of roots through β  is 

 

βαββα ++− qp ,,,, KK . 

 

In particular, 0, ≠βαN , so βαβα += LLL ][ . 

 

Proof. (i) ][][ αββα eeee −=  so αββα ,, NN −= . 

 

(ii) Suppose 0=++ γβα . 

 

 0]][[]][[]][[ =++ βαγαγβγβα eeeeeeeee  

⇒  0][][][ ,,, =++ +++ βαγαγαγβγβγβαβα eeNeeNeeN

⇒  0,,, =++ βαγαγβγβα hNhNhN  

⇒  ( ) ( ) 0,,,, =+−++− βαγβααγββα hNNhNN  

 

Since αh  and βh  are linearly independent, αγγββα ,,, NNN == . 

 

(iii) Take Φ∈δγβα ,,,  with zero sum and no opposite pairs. 

 

 0]][[]][[]][[ =++ βαγαγβγβα eeeeeeeee  

⇒  0][][][ ,,, =++ +++ βαγαγαγβγβγβαβα eeNeeNeeN  

⇒  ( ) 0,,,,,, =++ +++++ γβαβαγαγαγβγβγβαβα eNNNNNN  

⇒  0,,,,,, =++ δβαγδαγβδγβα NNNNNN  

 

(iv) Let Φ∈βα ,  with Φ∈+ βα . 
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 0]][[]][[]][[ =++ −−− ααβαβαβαα eeeeeeeee  

⇒  0][][][ ,, =++− −++−− αβααβαβαβαβα eeNeeNeh

⇒  ( )( ) 0,,,, =++ −++−− βαβααβαβαβααβ eNNNNh  

⇒  
βααβααβαβαβα hhNNNN ,,,,, −=+ −++−  

⇒  
βαβααβααβαβα hhNNNN ,,,,, =− −−+−−−  

 

Take βαβαβα −−= ,,, NNM , so 

 

βαβααβα hhMM ,,, =− +−  

 

Let the α -chain of roots through β  be 

 

βαββα ++− qp ,,,, KK  

 

So 

 

βααβαα

βααβααβαα

βααβααβαα

βαβααβα

+−+−

+−+−+−

+−+−+−

+−

=

=−

=−

=−

pp hhM

hhMM

hhMM

hhMM

,

,

,

,

,

23,2,

2,,

,,

M

 

 

So 

 

( ) ( )
( ) ( )

ααβα

ααβαβα

hhhhp

phhhhpM

pp
,,1

21,,1

2

1

,

+−+=

+++−+= K
 

 

By, by 8.11, qphhhh −=ααβα ,,2 , so 

 
( )( ) ( )( )

( )
αα

ααβα

hh

hhM

qp

ppqpp

,

,

2

1

2

1

2

1

,

+

+−+

−=

−=
 

 

So 0, ≠βαN ; βαβα += LLL ][ . 
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This result has certain consequences. Let Φ∈βα , , Φ∈+ βα , βαβαβα += eNee ,][ . Let 

βαγ −−= . Then 0=++ γβα . We have the following ordered pairs of roots whose 

sum is a root: 

 

( )βα ,  ( )γβ ,  ( )αγ ,  ( )αβ ,  ( )βγ ,  ( )γα ,  

( )βα −− ,  ( )γβ −− ,  ( )αγ −− ,  ( )αβ −− ,  ( )βγ −− ,  ( )γα −− ,  

 

We have a total order βα p . An ordered pair ( )βα ,  such that βα pp0  is called a 

special pair. 

 

Either one or two of γβα ,,  are positive; if one is positive two of γβα −−− ,,  are 

positive. Of the twelve pairs above just one is special. 

 

βα ,N , for any ordered pair ( )βα , , can be expressed in terms of ηξ ,N  for ( )ηξ ,  a special 

pair by using 12.2(i), (ii), (iv). So consider βα ,N  when ( )βα ,  is special; ΠΦ∈+ + \βα . 

This root may be expressible as βαβα ′+′=+  where ( )βα ′′,  is special and distinct 

from ( )βα , . 

 

A special pair ( )βα ,  is called extra special if for any special pair ( )βα ′′,  with 

βαβα ′+′=+   we have αα ′p . 

 

The number of extra special pairs is ΠΦ+ \ . 

 

Now let ( )βα ′′,  be special but not extra special. Then βαβα ′+′=+  where ( )βα ,  is 

extra special – such an extra special pair exists because the set of special and extra special 

pairs is finite. 

 

( ) ( ) 0=−+−+′+′ βαβα  

0,,,,,, =++ −′′−−′−′−−′′ ββααβααββαβα NNNNNN  

ββαα pppp ′′0  

( ) ( ) 0,,,,,, =++ −−′−′′−−′−−′′−−−′′ αααβββαβαααββαβα NNNNNN  

 

We show that βα ′′,N  is determined by ηξ ,N ’s for extra special pairs ( )ηξ , . We use 

induction on βα ′+′ : 

 

βα ′′,N  is determined by βα ,N , ααβ ′′− ,N , αβα −′,N , βββ ′′− ,N , ααα ,−′N . ( )βα ,  is extra 

special. 

 

Either ( )ααβ ′′− ,  or ( )αβα ′−′,  is special: 
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( ) βαβαβααβ ′+′=+=′+′− p  

 

So ααβ ′′− ,N  can be expressed in terms of ηξ ,N  for extra special pairs ( )ηξ , . 

 

Either ( )αβα −′,  or ( )ααβ ,−′  is special: 

 

( ) βαβαβα ′+′′=−′+ p  

 

Either ( )βββ ′′− ,  or ( )βββ ′−′,  is special: 

 

( ) βαββββ ′+′=′+′− p  

 

Either ( )ααα ,−′  or ( )ααα −′,  is special: 

 

( ) βααααα ′+′′=+−′ p  

 

Hence, βα ′′,N  can be expressed in terms of ηξ ,N ’s for extra special pairs ( )ηξ , . So 

relations 12.2(i)-(iv) expresses all βα ′′,N ’s in terms of ηξ ,N ’s for extra special pairs 

( )ηξ , . 

 

Theorem 12.3. There is a unique simple Lie algebra, up to isomorphism, with a given 

indecomposable Cartan matrix. 

 

( )αα LHL Φ∈⊕⊕=  

( ) Φ+= lLdim  

 

Thus, the simple Lie algebras and their dimensions are given by 

 

( ) ( )2dim += llAl  

( 1≥l ) 

( ) ( )12dim += llBl  

( 2≥l ) 

( ) ( )12dim += llCl  

( 3≥l ) 

( ) ( )12dim −= llDl  

( 4≥l ) 

( ) 78dim 6 =E  ( ) 133dim 7 =E  ( ) 248dim 8 =E  ( ) 52dim 4 =F  ( ) 14dim 2 =G  

 

Note. The following are isomorphic: 

 

22 CB ≅   

33 DA ≅  
 

112 AAD ⊕≅   
 

Proof. Uniqueness. Let LL ′,  be simple Lie algebras with indecomposable Cartan matrix 

( )ijaA = . L  has a Cartan decomposition ( )αα LHL Φ∈⊕⊕= . If { }lαα ,,1 K=Π  then H  
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has basis { }
l

hh αα ,,
1
K ; L  has basis { } { }Φ∈∪ αααα ehh

l
,,

1
K . Multiplication of basis 

elements: 

 

0][ =
ji

hh αα  

ααααα ehhhe
ii

,][ =  

ααα hee =− ][  





Φ∉+≠
Φ∈+

= +

βα
βαβαβα

βα
00

][
, eN

ee  

 

All scalar products βα hh ,  are determined by A . Also, all of the αh  (as linear 

combinations of the 
i

hα ) are determined by A . 

 

ijji
hahhs ij αααα −=)(  

 

So the 
i

sα  are determined by A . The Weyl group W  is generated by 
l

ss αα ,,
1
K . So W  is 

determined by A . )(
i

hwh αα =  for some i  and some Ww∈ . So the αh  are determined by 

A . 

 

( ) α
αα

βα
ββα h

hh

hh
hhs

,

,
2−=  

 

So ααβα hhhh ,,2  is determined by A . But 

 

∑ Φ∈ 












=

β
αα

βα

αα

2

,

,

,

1

hh

hh

hh
 

 

by 8.13. So αα hh ,  is determined by A . So βα hh ,  is determined by A . 

 

Suppose a basis { } { }Φ∈′∪′′ αααα ehh
l

,,
1
K  of L′  is given. We describe how to choose 

a basis of L . The 
i

hα  are uniquely determined. Choose 0≠αe  in αL  for each Π∈α . 

For each ΠΦ∈ + \α  there is a unique extra special pair ( )γβ ,  such that γβα += , 

αγβ p, . 

 

Assume by induction that γβ ee ,  are already chosen. Choose αe  by ][, γβγβα eeNe =  where 

γβγβ ,, NN ′= , the structure constant for L′ . Having thus chosen αe  for +Φ∈α , we 

choose α−e  by ααα hee =− ][ . 
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The βα ,N  for arbitrary βα ,  are determined by the ηξ ,N , where ( )ηξ ,  is extra special, by 

12.2. Since ηξηξ ,, NN ′=  for all extra special ( )ηξ ,  it follows that βαβα ,, NN ′=  for all 

Φ∈βα ,  with Φ∈+ βα . 

 

This shows that L  and L′  are isomorphic. 

 

Existence. (Sketch proof.) Begin with Cartan matrix ( )ijaA = . Let H  be an l -

dimensional vector space over C  with basis 
l

hh αα ,,
1
K . We define HHs

i
→:α  by 

ijji
hahhs ij αααα −=)( , a self-inverse map. Let W  be the group of all non-singular linear 

maps HH →  generated by 
l

ss αα ,,
1
K . W  is finite. Correspondingly, 

 

( ){ }liWwhwh
i

≤≤∈= 1,αα  

 

is also finite. (The αh  were determined in Chapter 11.) We now define a bilinear map 

 

C→× HH  

( ) yxyx ,, a  

 

This form is uniquely determined by A . Define ∗∈Hα  by ( ) xhx ,αα = ; let Φ  be the 

set of all such α . 

 

Let L  be a vector space over C  with ( ) ( ) Φ+= HL dimdim  with basis  

 

{ } { }Φ∈∪ αααα ehh
l

,,
1
K  

 

Define a bilinear map 

 

LLL →×  

( ) [ ]xyyx a,  

 

We define [ ]  on the basis elements by 

 

0][ =
ji

hh αα  

ααααααα ehhehhe
iii

,][][ =−=  

ααα hee =− ][  





Φ∉+≠
Φ∈+

= +

βα
βαβαβα

βα
00

][
, eN

ee  
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The βα ,N  can be chosen arbitrarily if ( )βα ,  is extra special, e.g. 1, =βαN . βα ,N  is 

determined for all other pairs by 12.2. So multiplication of basis elements is determined 

by A . We make various checks: 

 

Check [ ] 0=xx  for all Lx∈ . (Easy.) Check [ ][ ] [ ][ ] [ ][ ] 0+++ yzxxyzzxy . (Most are easy, 

but αex = , βey = , γez =  is difficult.) Then L  is a Lie algebra, ( )αα LHL Φ∈⊕⊕= , 

αα eL C= . Check that H  is a Cartan subalgebra of L . (Difficult.) Then 

( )αα LHL Φ∈⊕⊕=  is a Cartan decomposition of L  with respect to H . (Easy.) Then Φ  

is the set of roots of L  with respect to H . { }lαα ,,1 K=Π  is a fundamental system of 

roots inside Φ . We have  

 

ija
hh

hh

ii

ji =
αα

αα

,

,
2  

 

so A  is the Cartan matrix. Finally, the argument of 12.1(a) proves that L  is simple. 
 

 

Review. 

 

( )
ij

H

aAL = →Φ →

Π
roots

lfundamenta
choose

subalgebra
Cartan
choose

semisimple  

 

If we choose a different Cartan subalgebra and a different fundamental system do we get 

a different A ? 

 

Theorem 12.4. (i) Let L  be a Lie algebra and 21, HH  Cartan subalgebras. Then there 

exists an automorphism LL →:θ  such that ( ) 21 HH =θ . 

(ii) A subalgebra H  of L  is a Cartan subalgebra if and only if H  is nilpotent and 

( )HH N= . 

 

Theorem 12.5. Let Φ  be the root system of a semisimple Lie algebra and let 21,ΠΠ  be 

two fundamental systems in Φ . Then there is a Ww∈  such that ( ) 21 Π=Πw . 

 

12.4 and 12.5 imply that the Cartan matrix is uniquely determined by L . So the simple 

Lie algebras on our list are pairwise non-isomorphic. 

 

We have four infinite families of simple Lie algebras and five exceptional ones: 
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Classical Exceptional 

lA  lB  lC  lD  6E  7E  8E  4F  2G  

( )2+ll  ( )12 +ll  ( )12 +ll  ( )12 −ll 78 133 248 52 14 

1≥l  2≥l  3≥l  4≥l       

 

Type lA . We can write ( ) ( ) ( ) 112dim
2 −+=+= lllAl . The set ( )C1+lsl  of all 

( ) ( )11 +×+ ll  matrices of trace zero forms a Lie algebra of type lA . The diagonal 

subalgebra is a Cartan subalgebra. 

 

Type lB . The set ( )C12 +lso  of all ( ) ( )1212 +×+ ll  matrices X  satisfying 

 

X

I

I

I

IX

l

l

l

l
















−=

















00

00

001

00

00

001
T  

 

forms a simple Lie algebra of type lB . The diagonal subalgebra is a Cartan subalgebra. 

( )C12 +lso  is isomorphic to the Lie algebra of all ( ) ( )1212 +×+ ll  skew-symmetric 

matrices. Elements of ( )C12 +lso  have the block form 

 

















−−
−=

T

1122

T

01

1211

T

02

02010

XXX

XXX

XX

X  

 

where 11X  is an arbitrary ll ×  matrix, 12X  and 21X  are ll ×  symmetric matrices and 01X  

and 02X  are arbitrary l×1  matrices (row vectors). 

 

Type lC . The set ( )Cl2sp  of all ll 22 ×  matrices X  satisfying 

 

X
I

I

I

I
X

l

l

l

l









−

−=







− 0

0

0

0
T  

 

forms a simple Lie algebra of type lC . The diagonal subalgebra is a Cartan subalgebra. 

Elements of ( )Cl2sp  have the block form 

 









−

=
T

1121

1211

XX

XX
X  

 

where 11X  is an arbitrary ll ×  matrix and 12X  and 21X  are ll ×  symmetric matrices. 
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Type lD . The set ( )Cl2so  of all ll 22 ×  matrices X  such that 

 

X
I

I

I

I
X

l

l

l

l









−=








0

0

0

0
T  

 

forms a simple Lie algebra of type lD . The diagonal subalgebra is a Cartan subalgebra. 

( )Cl2so  is isomorphic to the Lie algebra of all ll 22 ×  skew-symmetric matrices. 

Elements of ( )Cl2so  have the block form 

 









−

=
T

1121

1211

XX

XX
X  

 

where 11X  is an arbitrary ll ×  matrix and 12X  and 21X  are ll ×  skew-symmetric 

matrices. 

 

( )Cmsl  is the Lie algebra of ( ) ( ) ( ){ }1detGLSL =∈= XX mm CC ; ( )Cmso  is the Lie 

algebra of ( ) ( ) ( ){ }1det and GLSO T ==∈= XIXXX mmm CC . 

 

Type 2G . ( ) 14dim 2 =G . Consider the algebra of octonians (a.k.a. Cayley numbers), O . 

( ) 8dim =O . O  has basis 721 ,,,,1 eee K : 

 

1 is the multiplicative identity; 

12 −=ie  for 71 ≤≤ i ; 

kji eee ±=  for 71 ≤≠≤ ji . 

 

1

2 3
4

56

7

 
 

The projective plane over the 2-field. 

 

kji eee =  if ji → ; kji eee −=  if ji ← . 
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O  is a non-associative algebra. The set of all derivations of O , i.e. linear maps 

OO→:D  such that ( ) ( ) ( )yxDyxDxyD += , forms a Lie algebra of type 2G . 

 

Type 4F . Define the octonian conjugate: 

 

∑ =
+=

7

101 i iieaax  

∑ =
−=

7

101 i iieaax  

10axxx =⇔=  

 

A matrix M  over O  is called Hermitian if MM =T . Let J  be the C -vector space of 

all 33×  Hermitian matrices over O . Such matrices have the form 

 
















=

1

1

1

czy

zbx

yxa

M  

 

where C∈cba ,,  and O∈zyx ,, . ( ) 27dim =J . We define multiplication on J  by 

 

( )12212
1

21 MMMMMM +=×  

J∈× 21 MM  for J∈21,MM  

 

J  is a commutative non-associative algebra; it is an example of a Jordan algebra, the 

axioms for which are that 

 

XYYX ×=×  

( ) ( )XYXXYX ××=×× 22  

 

The derivations of J  form a simple Lie algebra of type 4F . 

 

6E , 7E  and 8E  can all be described in terms of O  and J . 

 

There is an alternative approach to the existence theorem, which proceeds (in outline) as 

follows: 

 

Let L  be a simple Lie algebra with Cartan matrix ( )
ijaA = , ( )αα LHL Φ∈⊕⊕= . H  has 

basis 
l

hh αα ,,
1
K . Let 

 

ii

i

hh

h
hi

αα

α

,

2
= . 
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lhh ,,1 K  also form a basis of H . Choose 
i

Lei α∈≠0  and 
i

Lfi α−∈≠0 . 

 

( )

jij

ji

jijij

ea

hh

hh

ehh

ehhe

ii

ji

j

=

=

=

=

αα

αα

α

α

,

,2

,

][

 

jijij fahf −=][  

 

Choose if  with [ ] iii hef = ; lee ,,1 K  generate αα
L+Φ∈

⊕ ; lff ,,1 K  generate αα
L−Φ∈

⊕ ; 

lhh ,,1 K  generate H . So { }lihfeG iii ≤≤= 1,,  generates L . We have relations R : 

 

0][ =jihh  

jijij eahe =][  

jijij fahf −=][  

iii hef =][  

0][ =ijef  if ji ≠  

0]][[ =jiii eeee K  if ji ≠  ( ija−1  ie ’s) 

0]][[ =jiii ffff K  if ji ≠  ( ija−1  if ’s) 

 

(The requirements for ija−1  ie ’s and if ’s arise from consideration of the iα -chain of 

roots through jα .) The Lie algebra generated by G  with relations R  is a finite-

dimensional Lie algebra with Cartan matrix A . 

 

L  is constructed as follows: let R  be the polynomial ring lll hhffee ,,,,,,,, 111 KKKC  

with non-commutative variables. [ ]R  is the Lie algebra obtained from R . Let M  be the 

subalgebra generated by lll hhffee ,,,,,,,, 111 KKK . Let I  be the ideal of M  generated by 

 

][ jihh , jijij eahe −][ , jijij fahf +][ , iijij hef δ−][ , ]][[ jiii eeee K , ]][[ jiii ffff K . 

 

Then IML = . We can show that L  is finite-dimensional and has Cartan matrix A . 

 

 

 

 


