Tim Sullivan

Junior Professor in Applied Mathematics:
Risk and Uncertainty Quantification

Jon Cockayne

UQ Talks: Jon Cockayne

Next week Jon Cockayne (University of Warwick) will give a talk on “Probabilistic Numerics for Partial Differential Equations”.

Time and Place. Friday 14 October 2016, 12:00–13:00, ZIB Seminar Room 2006, Zuse Institute Berlin, Takustraße 7, 14195 Berlin

Abstract. Probabilistic numerics is an emerging field which constructs probability measures to capture uncertainty arising from the discretisation which is often necessary to solve complex problems numerically. We explore probabilistic numerical methods for Partial differential equations (PDEs). We phrase solution of PDEs as a statistical inference problem, and construct probability measures which quantify the epistemic uncertainty in the solution resulting from the discretisation [1].

We analyse these probability measures in the context of Bayesian inverse problems, parameter inference problems whose dynamics are often constrained by a system of PDEs. Sampling from parameter posteriors in such problems often involves replacing an exact likelihood with an approximate one, in which a numerical approximation is substituted for the true solution of the PDE. Such approximations have been shown to produce biased and overconfident posteriors when error in the forward solver is not tightly controlled. We show how the uncertainty from a probabilistic forward solver can be propagated into the parameter posteriors, thus permitting the use of coarser discretisations while still producing valid statistical inferences.

[1] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. “Probabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems.” arXiv preprint, 2016. arXiv:1605.07811

Published on Monday 3 October 2016 at 10:00 UTC #event #uq-talk #prob-num